sPHENIX TPC electronics ~Rough first idea~

Takao Sakaguchi

References:

- •STAR CDR of TPC (published in 1992 and 1993)
- •STAT NIM paper, NIM A499 (2003) 659
- •ALICE CDR of TPC upgrade (published in 2014)
- •ALICE NIM paper, NIM A622 (2010) 316

Starting out from this design

Nominal sPHENIX TPC Design

R_{outer}, B_{field}, length, fixed by BaBar Magnet

Subject to physics/engineering optimization

Ron Soltz

sPHENIX/STAR Meeting

How sPHENIX TPC is compared with others?

• STAR

- Radial position: 60cm-1.9m
- Longitudinal volume: 2*2.1m
- Drift voltage: 28kV (135V/cm)
- Electronics: 140K channels
- dN/dy: 3000

- ALICE
 - Radial position: 85cm-2.5m
 - Longitudinal volume: 2*2.5m
 - Drift voltage: 100KV (400V/cm)
 - Electronics: 560K channels
 - dN/dy: 8000 (40% occupancy at the inner radius)

sPHENIX TPC is around half scale downsize of these TPCs!

Designing of sPHENIX TPC Readout

- Number of channels: ~200K channels
 - dN/dy should be no larger than current.
 - Production effort should be 1/3 of ALICE case.
 - I'm supposing ALICE GEM-TPC upgrade case
- HV holding structure should be no different from ALICE or STAR's
 - Drift HV to be applied: ~ 15KV?
 - Field between the TPC cage and beam pipe wouldn't be different
- Use SAMPA Chips used for ALICE

Figure 6.1: Schematic of the readout system of the GEM TPC. The two main building blocks of the FEE are shown: The frontend ASIC SAMPA on the front-end cards (FECs). The FECs connect to a Common Readout Unit (CRU), located off-detector in the control room, through radiation hard GBT links.

Readout scheme for ALICE upgraded TPC

Figure 6.9: Schematic of the TPC readout system with the CRU as central part interfacing the front-end electronics to the trigger system, the DCS and the online farm.

Costs (from ALICE TPC upgrade CDR)

- With 560K channels: 6.6M CHF
 - 1CHF~1.03USD (as of today)
 - 6.8M USD
 - Not sure how the labor is included in this cost.
- May be downscaled the number by the channels for sPHENIX TPC case?
 - 200K channels = 2.5M USD?

Readout chambers	Quantity	Cost (MCHF)
	(incl. spares)	
GEM foils ¹	480	0.5
Frames and components	960	0.1
Pad planes	160	0.4
Chamber bodies	80	0.3
HV divider	80	0.1
Assembly and installation tooling		0.4
Total Readout Chambers		1.8
Services		Cost (MCHF)
GEM HV system		0.2
Fast current monitoring		0.2
HV supply for last FC resistor		0.1
Other services		0.2
Total Services		0.7
FEE and Readout	Quantity	Cost (MCHF)
	(incl. spares)	
SAMPA ASIC	19,500	0.78
Front-end card	3900	0.35
GBTx ASIC	7000	0.38
Optical transmitters/receivers	5500	0.79
CRU (control room, AMC40)		2.00
Optical fibers	9000	1.32
TPC Event Processing Nodes (TPC-EPN)		1.00
Other		0.02
Total Electronics		6.64
Total IROC	40	3.3
Total OROC	40	5.84
Total		9.14

Schedule (from ALICE TPC upgrade CDR)

Time saving our case?

- Time for developing SAMPA chips and CRU can be reduced to ~half?
 - Conservative estimate
- Production and testing time can be reduced by the difference of number of channels → half year?
- In the ALICE case, it takes around 4.5 year.
 - The sPHENIX case could be shorter: ~ 3 years? (conservative estimate)

TODO

- We shoudl start talking to ORNL people if we decide on SAMPA option

 We could get whole WBS from them
- We could downscale the cost and labor by the number of channels for some portion

SAMPA chip in detail

Figure 6.4: Schematic of the SAMPA ASIC for the GEM TPC readout, showing the main building blocks.

Figure 6.3: Expected average occupancies within a given time window for equivalent multiplicities of $dN_{ch}/d\eta|_{equiv} = 2500$, 4000 and 7500. The data is extrapolated using measured occupancies in isolated (no pileup) events recorded in 2010.