

"Pion femtoscopy in p+Au and d+Au collisions at $\sqrt{s_{NN}} = 200$ GeV in the STAR experiment"

Eugenia Khyzhniak

(for the STAR collaboration)

National Research Nuclear University MEPhI

09.10.2020

Outline

➢Motivation

>Femtoscopy

>Correlation functions and their fits

>Systematic uncertainty

 $\succ k_T$ dependence of R_{inv} and λ

≻System comparison

Motivation

Examination of the spatial and temporal scales of the particleemitting source is one of the ways to study the process of particle production.

M. Podgoretky 1989 Particles & Nuclei 20 630-68 In small systems (like p+p or d+Au) a collision area size is sensitive to fluctuations of initial conditions. Therefore, the detailed nature of particle production becomes important.

> A. Bzdak et al. 2013 Phys. Rev. C 87, 064906 C. Plumberg 2020 arXiv:2008.01709

3

Femtoscopy

- Femtoscopy allows one to measure:
 - Size of the emission source
 - Source shape & orientation
 - Lifetime & Emission duration

- System expansion dynamics are influenced by:
 - Transport properties
 - Phase transition/Critical point
 - Initial-state event shape

Extracted radii measure the homogeneity lengths of the source Akkelin SV, Sinyukov YM. Phys. Lett. B356:525 (1995) Eugenia Khyzhniak 09.10.2020

Analysis technique

R

 $\mathcal{C}(Q_{inv})$

STAR X

5

Construction of the correlation function:

 $C(Q_{inv}) = \frac{A(Q_{inv})}{B(Q_{inv})}$

∠ $A(Q_{inv}) - Q_{inv}$ distribution with Bose-Einstein statistics

 $B(Q_{inv}) - Q_{inv}$ distribution without it

Qinv

Fit of the correlation function: $C(q_{inv}) = N\left(1 - \lambda + \lambda K_{Coul}(q_{inv})\left(1 + G(q_{inv})\right)\right) D(q_{inv})$ $G(q_{inv}) = e^{-q_{inv}^2 R_{inv}^2}$ $D(q_{inv}) = const.$

Eugenia Khyzhniak 09.10.2020

The STAR experiment

≻Colliding systems:
>d+Au@200 GeV
>p+Au@200 GeV

>Pion identification:

Time Projection Chamber
(TPC) - main tracking detector,
|η| < 1.0 , full azimuth

STA

Example of the correlation functions and fits

Statistical and systematic uncertainty

>Sources of the systematic uncertainty:

>Selection criteria of the events: < 5%

 \geq Selection criteria of the tracks: < 6%

- >Selection criteria of the pairs: < 2%
- \succ Fit range: < 3%
- ≻Coulomb radius: < 3%

d+Au@200GeV

For almost all cases

statistical uncertainty

smaller than marker size

$k_{\rm T}$ dependence of $R_{\rm inv}$ and λ

System comparison (R_{inv} Vs. k_T)

> Radii increases with increasing size of the colliding system

> The femtoscopic radii difference between colliding species becomes smaller with increasing k_T

- >Femtoscopic parameters were obtained for p/d+Au systems
- > The k_T dependence of the R_{inv} shows the dynamic of the system and allows to probe the different regions of the homogeneity in both p/d+Au systems
- >Radius increases with increasing particle multiplicity
- >The femtoscopic radii difference between colliding species becomes smaller with increasing $k_{\rm T}$

Thank you for your attention!

VI

Back-up slide

Selection criteria

Event cuts	Track cuts	Pair cuts	Pion TPC cuts
$ Z_{TPC} $ (cm) < 40	$N_{Hits} > 15$	-0.5 < Splitting Level (quality) < 0.6	$ n\sigma_{pion} < 2$
$\sqrt{X_{TPC}^2 + Y_{TPC}^2}$ (cm) < 2	$N_{Hits}/N_{HitsFit} > 0.51$	$0.15 < k_T (GeV/c) < 1.05$	$ n\sigma_{other} > 2$
$ Z_{TPC} - Z_{VPD} \text{ (cm)} < 5$	DCA < 2 cm	Average Separation of two tracks within TPC volume (cm) > 10	
	$ \eta < 0.5$	-1.1 < Fraction of Merged Hits (%) < 0.1	
	0.15		

STAR