

Updates on Calculation of Specific Heat in 3 GeV FXT Au+Au

Rutik Manikandhan University of Houston

08/11/2022

STAR Event and Track Cuts

Acceptance Cuts:

- Fixed Target, run 2018 data production, 3 GeV Au+Au collision, y_c.m. ≈1.045
- ✤ 198 <V_z< 202 cm</p>
- V_r<1.5 cm about beam spot centered around [0,-2].
- Trigger ID 620052 and 620053 (Min.Bias)
- ✤ DCA < 3.0 cm</p>
- NhitsFit/NHitsMax > 0.51
- Bad runs list : https://drupal.star.bnl.gov/STAR/system/files/ Kimelman_3GeV_run_by_run_QA_badRuns.p df
- 1.5 M Events analysed (Rest ongoing)

Centrality Definition FXTMult

Centrality Definition:

Centrality Bin	FXTMult Cuts (inclusive)
0-5%	195-142
5-10%	141-120
10-20%	119-86
20-30%	85-61
30-40%	60-42
40-50%	41-27
50-60%	26-17
60-70%	16-9
70-80%	8-5

*Pile-up cut at 195

*

**

https://drupal.star.bnl.g ov/STAR/system/files/S weger_3p0GeV_Standar dNewest_fcv2020Nov1 1.pdf

STAR Brief Overview

- C_v used to quantify dynamical fluctuations with a beam energy scan.
- Effective temperature (T_{eff}) .
- Calculated from <p_T> distributions.
- $T_{\text{eff}} = T_{\text{kin}} + f(\beta_T)$
- T_{kin} obtained from the Blast wave parametrization.

$$\left(rac{1}{C} = rac{(<\!T_{kin}^2> - <\!T_{kin}>^2)}{<\!T_{kin}>^2} pprox rac{(<\!T_{eff}^2> - <\!T_{eff}>^2)}{<\!T_{kin}>^2}
ight)$$

- Previous CF talks : https://drupal.star.bnl.gov/STAR/system/files/CF-08_1
 - 1_22.pdf
- https://drupal.star.bnl.gov/STAR/system/files/Copy%2 0of%20CF-09_13_22.pdf

Calculating Charged particle efficiencies [$\epsilon(N_{ch}, p_T)$] :

- We have the identified particle efficiencies, $\epsilon(\pi, p_T)$, $\epsilon(K, p_T)$, $\epsilon(p, p_T)$.
- Calculate charged particle efficiencies from them and particle ratio using spectra.

$$\epsilon(N_{ch},p_T)=\epsilon(\pi,p_T)st R_{\pi}(p_T)+\epsilon(K,p_T)st R_K(p_T)+\epsilon(p,p_T)st R_p(p_T)$$

$$R_{\pi}=rac{N_{\pi}}{N_{\pi}+N_{K}+N_{p}}$$

- ♦ The ratios are calculated by extrapolating the p_T spectra at |y-y_{cm}| < 0.05.
- The extrapolation was done using the Blast wave function.
- The spectra was obtained from Ben Kimelman.

- A sweet spot was identified for the identified particle efficiencies.
- ✤ -1.2 < y < 0.2</p>

Kaon (+) Efficiencies

Rapidity Averaged Efficiency

Proton Efficiencies

- Charged particle efficiency is calculated.
- Ideally the ratios have to be from the same rapidity window as well.
- ✤ -1.2 < y < 0.2</p>

- The efficiency correction was done E-by-E.
- Correct the N_{ch} (multiplicity) in each p_T bin.
- Each p_T bin was of 20 MeV.

$$< p_T > = rac{p_T^1 + p_T^2 + p_T^3 + ...}{N_{ch}}$$

$$< p_T > = rac{p_T^1/\epsilon(p_T^1) + p_T^2/\epsilon(p_T^2) + p_T^3/\epsilon(p_T^3) + ...}{N_{ch}^1/\epsilon(p_T^1) + N_{ch}^2/\epsilon(p_T^2) + N_{ch}^3/\epsilon(p_T^3) + ...}$$

STAR Data Vs UrQMD

UrQMD (Same Acceptance, true yield)

STAR Mixed Event Analysis

STAR Mixed Event Analysis

Next Steps

Working on:

- 1. Running on RCF (all events)
- 2. Working on i-HRG to obtain baseline
- 3. Systematics
- 4. Cross check at other energies

Phys. Rev. C 94, 044901 (2016)

Thank you for your attention

Backup Slides

*

*

Backup Slides $< p_T > Distribution_{Au + Au \sqrt{S_{NN}} = 27 \text{ GeV; Centrality(0-5%)}}$ -2.0 < η < 0.0 A small subset of 27 GeV is taken for 10² analysis. _<p_>real The event cuts and track cuts are from Chun-Jian. https://drupal.star.bnl.gov/S 10 TAR/system/files/BES 200 54 27 meanpT 0119.pdf d.2 0.3 0.4 0.5 0.6 <p_> (GeV/c) 0.7 0.9 0.8

