
Dear PA’s,  
 
This is an important study, but I have strong issues with your analysis and your paper draft. I object to 
your omission of the nonflow subtraction method via near-side jetlike peak normalization STAR 
published in Ref.[19]. I thought you agreed that this will be one of the systematic uncertainties of 
nonflow subtraction. Since there’re strong multiplicity biases in those small-system collisions, it is 

important to show the  correlations similar to those in Fig.1 of Ref.[19], and I strongly encourage you 
to include those in the paper. 
 
Your c0-subtraction method, assuming nonflow in high multiplicity (HM) pAu/dAu/He3Au to be identical 
to that in MB pp, is really a simple/naive one because of multiplicity biases. The near-side jetlike 
normalization is a step forward to consider this effect. 
 
Your c1-subtraction and template fit methods are really identical except a multiplicative factor. From the 
template method Eqs.3,4, you have: 
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From these eqns, one can easily get:  
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where 1 1/ ppf c c  is the scaling factor in the c1-normalization method. The difference is really what 

baseline you take, c0 from the HM events or 0 0 0(1 )ppG c Fc f c     after subtracting the scaled MB 

pp baseline. Your Fig.2 indeed shows that {template}sub

nc  is always larger than 1{ -norm.}sub

nc c by some 

factor. So they should not really be called two different methods. I would simply choose one of them 
(probably the template one) and say the other one is equivalent except a multiplicative factor. 
 

A small comment here: I wouldn’t use c0 in the Fourier expansion function, but something else like Y 

(yield) or A (amplitude). This is because c0 and cn as written mean really different things, and thus can be 

confusing. If you use c0, then the Fourier function should be really written as 
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which I don’t recommend as you will have to make many changes to the subsequent formulas. 

 

The description on L69-85 about MB, HM, and centrality definition (by multiplicity) is important, as 
multiplicity biases are significant in these small-system collisions as I said above. This is because in these 
small systems, as you well know, by requiring high multiplicity you’re biasing the underlying physics 
processes in these events towards, e.g., larger jet contributions. The paper uses top 10% centrality from 
MB dAu and He3Au data, and pAu data from HM trigger with a threshold cut. The multiplicity 
distributions are probably quite different. It is important to include a figure in the paper showing 
multiplicity distributions of MB pp/pAu/dAu/He3Au and HM pAu data.  
 
 



You say: 
L74: For p+Au collisions, in order to select 

75 a data sample with the similar mean number of tracks to 
76 that of the 0%− 10% central d+Au and make a straight- 
77 forward comparison of the v2;3 value, we use HM trigger 
78 p+Au data set with a threshold cut applied to the raw 
79 multiplicity. 

I don’t think similar multiplicity between pAu and dAu is necessarily a straightforward comparison 
because again there are strong correlations between the multiplicity and the underlying physics 
processes in these small systems, so the same multiplicity in these two systems could mean quite 
different things in terms of the underlying events. 
 
L79: The uncertainties for non-ow subtraction 
80 will be much smaller in this selected p+Au sample by 
81 comparing with 0%-10% MB p+Au due to a factor of 
82 two larger mean number of tracks. 

I’m not sure the nonflow uncertainty will be necessarily much smaller, as those high multiplicity pAu 
events are biased towards larger jet contributions. 
 
L106: The observed patterns in the correlation functions for 
107 p/d/3He+Au collisions (shown in Fig. 1) suggests a siz- 
108 able inuence from ow, as well as non-ow correlations 
109 that will be removed with subtraction methods. By con- 
110 trast, the observed correlator for p+p indicates a domi- 
111 nating role for the non-ow correlations, suggesting that 
112 it can be leveraged to give quantitative estimates of the 
113 non-ow contributions to the correlators for p/d/3He+Au 
114 collisions. 

I agree that the distributions are different, but I don’t see how you can directly jump to the conclusion 
that there’s a sizable influence from flow as well as nonflow correlations. If you just simply get Fourier 
coefficients, then they’re probably all similar (independent of multiplicity), except c1; see STAR’s 
publication Physics Letters B 747 (2015) 265–271. 
 
L118: We assume that the non-ow contribu- 
119 tions to p/d/3He+Au is a superposition of several proton- 
120 proton collisions. 

You need to add ‘MB’ before “proton-proton collisions”. 

 

L127-133: the description is quite cumbersome. Why do you use Trig. and Assoc. at all? Since they are 
from the same phase space, I would simply say pair correlations normalized by single particles, and then 
vn is just the square-root of cn.  
 

 

Best regards, 

Fuqiang 

 


