

Probing Spin Hall Effect in Heavy-Ion collisions via Λ spin polarization

Qiang Hu, Subhash Singha, Hao Qiu

Quark Matter Research Center Institute of Modern Physics, CAS

STAR FCV Meeting, Dec. 15, 2021

Outline

- Motivation
- Data analysis
- Global polarization for Λ
- Local polarization for Λ
- Summary

Global spin polarization of hyperons

 \rightarrow Global nature of hyperon polarization in HIC

Local spin polarization of hyperons

• Elliptic flow (stronger flow in-plane than out-of-plane) is expected to generate a longitudinal component of polarization (P_z)

$$-\phi_{p}^{*} = -\theta_{p}^{*}$$
beam direction (z)

$$P_z = \frac{< cos \theta_p^* >}{\alpha_H < (cos \theta_p^*)^2 >}$$

 θ^* : angle between daughter proton momentum vector in Λ rest frame and polarization direction

PRL 123,132301 (2019)

Local spin polarization of hyperons

- Observation of (P_z) in Au+Au 200 GeV
- Many models fail to capture trend with proper sign
- New developments, Shear Induced Polarization (SIP) can capture the trend

Baryonic Spin Hall Effect

<u>Spin Hall Effect in Condensed matter: $s \propto \pm p \times E$ </u>

Electric field (E)

"Spin-orbit" interaction

Splitting in spin in opposite directions

Spin Hall Effect in hot QCD matter: $s \propto \pm p \times \nabla \mu_B$

Baryon density "Spin-orbit" gradient ($\nabla \mu_B$) interaction

Splitting in spin between Λ and anti- Λ local spin polarization

S. Liu & Y. Yin, Phys. Rev. D 104 (2021) 054043 (IMP,CAS)

Baryonic Spin Hall Effect

"RHIC Beam Energy Scan: Theory and Experiment", Nov 23,2021

Proposed signature for SHE:

 $< P_y \cos (2\phi) > \rightarrow$ Non-monotonic energy dependence $< P_z \sin (2\phi) > \rightarrow$ Monotonic energy dependence

No investigation of proposed SHE in heavy ion collisions!

Part II: Data analysis

Dataset and analysis details

Au+Au @ 27 GeV, BES-II production=P19ib

- Event Cuts — Vertex: |Vz| < 70 cm |Vr| < 2 cm
- Trigger ID (610011 || 610016 || 610021 || 6100216|| 610031 || 610041|| 610051)
- Pile-up rejection— Centrality from "StRefMultCorr"

Single track Cuts

- $-0.15 \text{ GeV/c} < p_t < 5 \text{ GeV/c}$
- No. of TPC hits > 15
- Nhits-TPC/Possible Hits >= 0.52

 $- |\eta| < 1.0$

Pion/Proton PID Cuts — if ToF available $(1/\beta - 1/\beta_{\pi}) < 0.03$ $(1/\beta - 1/\beta_{p}) < 0.04$

else use TPC
 |Nσ| < 3 for both π and p

No. of events for analysis: ~378 M

Part II: Analysis details

Part II: Analysis details

Event plane reconstruction (EPD)

EPD Event Plane Cuts — Using standard cuts implemented in "StEpdEpFinder" (by Mike Lisa)

Apply phi weights, v1 weights and shift calibrations

Part II: Analysis details

Event plane reconstruction (TPC)

Apply run-by-run and centrality wise re-centering and shift calibrations

 $\Lambda \rightarrow p + \pi^{-}$

Different panels are Λ invariant mass spectra for different centrality

 $\bar{\Lambda} \rightarrow \bar{p} + \pi^+$

Different panes are anti- Λ invariant mass spectra for different centrality 13

Blue: w/o bkg; Red: with bkg (α + β M_{inv})

14

Λ

0.5 GeV/c<p_t<5.0 GeV/c; $|\eta|$ <1.0 α(Λ)=0.732; α(anti-Λ)=-0.758

Λ

18

19

0.5 GeV/c<p_t<5.0 GeV/c; $|\eta|$ <1.0 α(Λ)=0.732; α(anti-Λ)=-0.758; Δφ=φ-ψ₂

Hints for non-zero P_z in midcentral collisions

Summary

- \succ Spin Hall Effect is proposed to be studied by measuring A hyperons' local polarization in heavy-ion collisions
- \succ Centrality dependent global and local polarization of A are studied without correction
- \succ A's global polarization is consistent with the STAR preliminary result within the errors

Next steps

- **Efficiency & acceptance correction**
- Measurement of $\langle P_x * \sin(2\phi) \rangle$ and $\langle P_v * \cos(2\phi) \rangle$
- Continue to analysis the BES-II Au+Au collisions data at lower energies (19.6 GeV, 14.6 GeV and 7.7 GeV et al.) to search SHE signal

Thank you for your attention!

Backup

Spin Hall Effects in Heavy Ion Collisions

Can we observe and explore SHE in heavy ion collisions ?

<u>SHE for hot **QCD** matter</u> $\vec{P}_{\pm} \propto \pm \hat{p} \times \nabla \mu_B$

-Sign dependence on baryon charge ----- Net Lambda Polarization

(For global polarization, see arXiv:2106.08125)

Expand /decompose \mathcal{A}^{μ} to 1st order gradient of the fields:

$$\begin{aligned} \mathcal{A}^{\mu}(x,p) &= \beta f_{0}(x,p)(1-f_{0}(x,p))\varepsilon^{\mu\nu\alpha\rho} \times \left(\underbrace{\frac{1}{2}p_{\nu}\partial_{\alpha}^{\perp}u_{\rho}}_{\text{vorticity}} + \underbrace{\frac{1}{\beta}u_{\nu}p_{\alpha}\partial_{\rho}\beta}_{\text{Vorticity}} - \underbrace{\frac{p_{\perp}^{2}}{\varepsilon_{0}}u_{\nu}Q_{\alpha}^{\lambda}\sigma_{\rho\lambda}}_{\text{SIP}} \right) \\ \text{Spin Cooper-Fryer:} \\ P^{\mu}(p) &= \underbrace{\frac{\int d\Sigma^{\alpha}p_{\alpha}\mathcal{A}^{\mu}(x,p;m)}{2m\int d\Sigma^{\alpha}p_{\alpha}f_{0}(x,p)}}, \end{aligned}$$

S. Y. F.Liu and Y. Yin, JHEP07, 188 (2021); *Phys.Rev.D* 104 5, 054043(2021); 29 B. Fu, L. -G. Pang, H. Song, Y. Yin, in preparation.

B. Fu, L. G. Pang, H. Song, Yi Yin, On-line seminar series III on "RHIC Beam Energy Scan: Theory and Experiment", Nov 23,2021

Competition between different effects

-SHE(μ_B gradient effects): comparable to T-gradient and Shear (SIP) effects depends on collision energy ³¹

B. Fu, L. G. Pang, H. Song, Yi Yin, On-line seminar series III on "RHIC Beam Energy Scan: Theory and Experiment", Nov 23,2021