Nonflow contaminations in flow measurements

Fuqiang Wang January 19, 2022

Collision-system and beam-energy dependence of anisotropic flow fluctuations

266 event selection was varied via cuts on the vertex posi-²⁶⁷ tions determined in the TPC along the beam direction, v_z , to $v_z > 0$ cm and $v_z < 0$ cm. (ii) Track selection was ²⁶⁹ varied by (a) reducing the distance of closest approach 270 (DCA) between a track and the primary vertex, from ²⁷¹ its nominal value of 3 cm to 2 cm, and (b) increasing ²⁷² the number of TPC space points used from more than 273 15 points to more than 20 points. (iii) The pseudora-274 pidity gap, $\Delta \eta = \eta_1 - \eta_2$ for the track pairs, used to 275 mitigate the non-flow effects due to resonance decays, 276 Bose-Einstein correlations, and the fragments of individ-²⁷⁷ ual jets, was varied from $|\Delta \eta| > 0.6$ to $|\Delta \eta| > 0.8$. The 278 $\Delta \eta$ cut does not entirely suppress possible long-range 279 non-flow contributions (e.g., jets in a dijet event), which 280 increase from central to peripheral events and decrease ²⁸¹ with beam energy. Estimates of the systematic uncer-282 tainty due to this residual non-flow contribution can be ²⁸³ made via several techniques [66–69]. The peripheral sub-284 traction method [66] indicates uncertainties that range $_{285}$ from 1% in central collisions to 13% in peripheral col-286 lisions at $\sqrt{s_{\rm NN}} = 200$ GeV. Due to the lower jet yields for beam energies $\lesssim 63 \text{ GeV}$ [70], the much smaller asso-²⁸⁸ ciated uncertainties are not included in their respective 289 overall systematic uncertainty estimate.

For identified particle species, the particle identifica-²⁹¹ tion cuts were also varied about their nominal values [71]. ²⁹² The overall systematic uncertainty, assuming indepen-²⁹³ dent sources, was estimated via a quadrature sum of the ²⁹⁴ uncertainties resulting from the respective cut variations. ²⁹⁵ They range from 4% to 6% for v_2 {2} [72], 2% to 4% for ²⁹⁶ v_2 {4} and v_2 {6}, and 4% to 8% for v_2 {4}/ v_2 {2}, from ²⁹⁷ central to peripheral collisions, depending on the beam ²⁹⁸ energy. The $\Delta\eta$ -associated uncertainty dominates the ²⁹⁹ overall uncertainty of v_2 {4}/ v_2 {2} since the effects of the ³⁰⁰ other cut variations approximately cancel.

In Fig. 1 the $p_{\rm T}$ -integrated two-, four-, and six-particle so2 elliptic flow (a) and the ratio $v_2\{4\}/v_2\{2\}$ (b), are preso3 sented as a function of centrality for Au+Au collisions Nonflow systematic uncertainty is estimated by varying $\Delta\eta$ cut from 0.6 to 0.8

Residual nonflow is acknowledged. Numbers from peripheral subtraction are mentioned. These numbers are not included in the quoted systematic uncertainties as far as I can tell.

"the much smaller associated uncertainties are not included" comes out of nowhere. The systematics are NOT even included for 200 GeV.

Hijing simulation Ru+Ru 200 GeV

 $\Delta \eta$

