

Figure 1. The run by run $\langle v_x \rangle$ (top), $\langle v_y \rangle$ (middle) and $\langle \text{RefMult} \rangle$ (bottom) distributions for Ru+Ru (left) and Zr+Zr (right) collisions.

Figure 2. $\langle \text{RefMult} \rangle$ vs $\langle v_r \rangle$ (top), $\langle v_x \rangle$ (middle), $\langle v_y \rangle$ (bottom) for Ru+Ru (left) and Zr+Zr (right) collisions.

199

ZrZr

199

Figure 3. (RefMult) vs $\langle v_r \rangle$ (top), $\langle v_x \rangle$ (middle), $\langle v_y \rangle$ (bottom) for Ru+Ru (left) and Zr+Zr (right) collisions in two different run periods shown in Fig. 1.

Figure 4. Event-by-event $\langle \text{RefMult} \rangle$ vs $\langle v_r \rangle$ (top), $\langle v_x \rangle$ (middle), $\langle v_y \rangle$ (bottom) distributions for Ru+Ru (left) and Zr+Zr (right) collisions.

Figure 5. (Top) The run IDs are divided in to two part with $\langle v_y \rangle$: $\langle v_y \rangle < \text{Mean (Left) and } \langle v_y \rangle > \text{Mean (Right)}$. The mean $\langle v_y \rangle$ for RuRu is -0.2188 cm and for ZrZr is -0.2151 cm (See also Fig.1). (Middle) The multiplicity distribution ratios between RuRu and ZrZr with different $\langle v_{x,y} \rangle$ groups. (Bottom) The double ratios of R(P(N)) in middle panle to the R(P(N)) of full events.