Light Nuclei Flow in $\sqrt{s_{NN}}$ =3.2, 3.5, 3.9GeV Au+Au Collisions

Yue Xu Institute of Modern Physics 2023/01/11

Outline

- Dataset and event cuts
- Centrality definition and event plane reconstruction
- v₁ vs rapidity in 3.2, 3.5, 3.9GeV
- v₁ slope in 3.0, 3.2, 3.5, 3.9GeV
- v₂ vs rapidity in 3.2, 3.5, 3.9GeV
- Summary

Dataset and event cuts (3.2GeV)

Systyem: Run 19, Au+Au 3.2GeV Run number: 20179040-20183025(90 runs) Bad run number: 20180005, 20180006, 20180019, 20180025, 20181016, 20182034, 20183001, 20183013, 20183014, 20183019 $198 \text{cm} < \text{V}_z < 202 \text{cm}$ $\sqrt{V_x^2 + (V_y - 2)^2} < 2 \text{cm}$ $DCA \le 3 \text{cm}$ $N_{Hits} \ge 15$ $N_{Hits}^{Fit} / N_{Hits}^{Max} > 0.52$

1/11/2023

Centrality definition in 3.2GeV(Done by Shaowei)

Centrality	RefMult cut
0-5%	198-290
5 - 10%	167-178
10 - 20%	120-167
20 - 30%	84-120
30 - 40%	56-84
40 - 50%	36-56
50 - 60%	21-36
60 - 70%	12-21
70 - 80%	6-12

From Shaowei Lan

1/11/2023

Event plane reconstruction in 3.2GeV (Done by Li-Ke)

https://drupal.star.bnl.gov/STAR/system/files/Kaons_flow_FCV_0629.pdf

Event plane reconstruction

- > EP reconstrution : Q vector method
- Re-centering and shift calibration
- Event plane resolution : three subevents method (EPD-AB vs. EPD-C and TPC-B)
 - Signal with centrality in 40-80% have very little counts;
 - Choose events with a centrality range: 10-40%;

The light nuclei z distribution in different momentum bins

- We used a momentum dependent z cut to guarantee the high purity (>98%)
- The m^2 values used in the selection of the light nuclei

proton	$0.6 < m^2/q^2 < 1.2$ (p > 2.6GeV)
deuteron	$2.8 < m^2/q^2 < 4.8$ (p > 2.8GeV)
³ He	/

Yue Xu

Acceptance

v₁ vs rapidity in 3.2GeV

Fit function :
$$f(x) = ax^3 + bx$$

3.2GEV		
Particle	p_T /A range	v_1 /A
р	(0.4,2.0)	$0.2982{\pm}0.00012$
d	(0.4,3.5/2)	$0.3013 {\pm} 0.00014$
^{3}He	(0.4,4.0/3)	$0.3038 {\pm} 0.00034$

With the increase of nucleus mass, the v_1 slope becomes larger, compatible with A scaling.

 $v_1 v_5 p_T in 3.2 GeV$

 \succ The slope of v₁ is compatible with A scaling for p, d and ³He only in -0.5 < y < -0.2.

 \succ In -0.1<y<0, the value of v₁ of proton does not approach to 0 when p_t tends to 0. This may be due to the lower purity in low p_t .

v₁ vs rapidity in 3.5GeV

Fit function :
$$f(x) = ax^3 + bx$$

3.5GEV		
Particle	p_T /A range	v_1 /A
р	(0.4,2.0)	$0.2062 {\pm} 0.00015$
d	(0.4,3.5/2)	$0.2265 {\pm} 0.00027$
^{3}He	(0.4,4.0/3)	$0.2335 {\pm} 0.00060$

With the increase of nucleus mass, the v_1 slope becomes larger, compatible with A scaling.

 $v_1 v_5 p_T in 3.5 GeV$

- The slope of v_1 is compatible with A scaling for p, d and ³He only in -0.7<y<-0.2.
- ➢ In -0.1<y<0, the value of v₁ of proton does not approach to 0 when p_t tends to 0. This may be due to the lower purity in low p_t .

11

v₁ vs rapidity in 3.9GeV

Fit function :
$$f(x) = ax^3 + bx$$

3.9GEV		
Particle	p_T /A range	v_1 /A
р	(0.4,2.0)	$0.1244 {\pm} 0.00017$
d	(0.4,3.5/2)	$0.1398 {\pm} 0.00039$
^{3}He	(0.4,4.0/3)	$0.1548 {\pm} 0.00081$

- With the increase of nucleus mass, the v₁ slope becomes larger, compatible with A scaling.
- The trend of v₁ vs rapdity is different from lower collison.

 $v_1 v_5 p_T in 3.9 GeV$

- The slope of v_1 is compatible with A scaling for p, d and ³He only in -0.8<y<-0.4.
- ➢ In -0.2<y<0, the value of v₁ of proton does not approach to 0 when p_t tends to 0. This may be due to the lower purity in low p_t .

v₁ slope in 3.0, 3.2, 3.5, 3.9 GeV

The v_1 slope of protons and light nuclei decreases with increasing energy.

v₂ vs rapidity in 3.2, 3.5, 3.9GeV

- For proton, the values of v_2 are negative in mid-rapidity at 3.2GeV, while the values turn to be positive in mid-rapidity at 3.5, 3.9GeV
- For ³He, the values of v_2 are positive in mid-rapidity at 3.2, 3.5, 3.9GeV.
- For ³He, there is a jump in -0.5 < y < -0.3 at 3.9GeV.

$v_2 v_5 p_T in 3.2 GeV$

1/11/2023

$v_2 vs p_T in 3.5 GeV$

1/11/2023

Yue Xu

$v_2 vs p_T in 3.9 GeV$

1/11/2023

18

Summary

- v₁ vs rapidity in 3.2, 3.5, 3.9GeV
 - With the increase of nucleus mass, the v₁ slope becomes larger, compatible with A scaling
- v₁ slope in 3.0, 3.2, 3.5, 3.9GeV
 - The v_1 slope of protons and light nuclei decreases with increasing energy
- v₂ vs rapidity in 3.2, 3.5, 3.9GeV
 - For proton, the values of v_2 are negative in mid-rapidity at 3.2GeV, while the values turn positive in mid-rapidity at 3.5, 3.9GeV
 - For ³He, the values of v_2 are positive in mid-rapidity at 3.2, 3.5, 3.9GeV

Next

- Calculate the systematic uncertainty
- Efficiency correction (need embedding data)

Thank you!

Embedding requests for light nuclei in AuAu3.5GeV 2020 and AuAu3.9GeV 2020

Yue Xu 2023.1.4

Embedding requests for light nuclei in AuAu3.5GeV 2020

Embedding request shoule be:

- Real data: 2020 FXT 5.75GeV ($\sqrt{s_{NN}}$ =3.5GeV)
- Trigger Id = 720000
- Production tag: P21id
- Particle: proton, deuteron, triton, helium3 and helium4
- Particles per event 5% mult

• 198cm <
$$V_z$$
 < 202cm, $\sqrt{V_x^2 + (V_y - 2)^2}$ < 2cm

- Kinematic: flat p_t : [0,5]GeV/c; flat y: [-1.2,0.8]; flat phi: [0,2 π]
- Statistics requested: 2.5 M for each particle
- Other event cuts: no

Embedding requests for light nuclei in AuAu3.9GeV 2020

Embedding request shoule be:

- Real data: 2020 FXT 7.3GeV ($\sqrt{s_{NN}}$ =3.9GeV)
- Trigger Id = 730000
- Production tag: P21id
- Particle: proton, deuteron, triton, helium3 and helium4
- Particles per event 5% mult

• 198*cm* <
$$V_z$$
 < 202*cm*, $\sqrt{V_x^2 + (V_y - 2)^2}$ < 2*cm*

- Kinematic: flat p_t : [0,5]GeV/c; flat y: [-1.2,0.8]; flat phi: [0,2 π]
- Statistics requested: 2.5 M for each particle
- Other event cuts: no

Backup -Dataset and event cuts (3.5GeV)

Systyem: Run 20, Au+Au 3.5GeV Run number:20355020-21045011 (31 runs) Bad run number: 20355021, 21044023, 21045011 $198 < V_z < 202$ $\sqrt{V_x^2 + (V_y - 2)^2} < 2$ $DCA \leq 3cm$ $N_{Hits} \geq 15$ $N_{Hits}^{Fit} / N_{Hits}^{Max} > 0.52$

Backup -Dataset and event cuts (3.9GeV)

Systyem: Run 20, Au+Au 3.9GeV Run number: 21035004-21036013 (32 runs) Bad run number: 21035006,21035025,21035031,21036007 $198 < V_z < 202$ $\sqrt{V_x^2 + (V_y - 2)^2} < 2$ $DCA \leq 3cm$ $N_{Hits} \geq 15$ $N_{Hits}^{Fit} / N_{Hits}^{Max} > 0.52$

Backup - The light nuclei z distribution in different momentum bins

- We used a momentum dependent z cut to guarantee the high purity (>98%)
- The m^2 values used in the selection of the light nuclei

proton	$0.6 < m^2/q^2 < 1.2$ (p > 2.6GeV)
deuteron	$2.8 < m^2/q^2 < 4.8$ (p > 2.5GeV)
³ He	/

Backup - The light nuclei z distribution in different momentum bins

- We used a momentum dependent z cut to guarantee the high purity (>98%)
- The m^2 values used in the selection of the light nuclei

proton	$0.6 < m^2/q^2 < 1.2$ (p > 2.6GeV)
deuteron	$2.8 < m^2/q^2 < 4.8$ (p > 2.3GeV)
³ He	/

27

v₂ vs rapidity in 3.0GeV

