Questions about q-vectors FCV PWG Weekly Meeting

Isaac Mooney (Yale University / BNL) 3/15/2023

Analysis

Looking at isobar 200 GeV dataset

quenching in medium

Reminder:
$$q_2 = |Q_2| / \sqrt{M}$$
 where $Q_2 = (\sum_{i=1}^{M} w_i \cos 2\phi_i, \sum_{i=1}^{M} w_i \sin 2\phi_i)$

Obtaining q₂ from EPD-W (and event plane angle from EPD-E)*, using a truncated nMIPs signal as 'M'

Using q₂ to characterize event shape to study path length dependence of jet

Question: we have an EPD resolution, but how does the q₂ resolution look?

*Doing this to avoid autocorrelation, but would appreciate input on whether it's actually necessary

Event plane resolution

Centrality 20-35%

Some correlation (left) visible albeit with low statistics — easier to see on a linear scale Resolution extracted from this (right) does roughly agree with Mike Lisa's here (with more statistics, I've seen better agreement): https://drupal.star.bnl.gov/STAR/blog/lisa/ep-resolution-epd-and-bbc [last plot in Fig. 2]

N.B.: for all these tests, looking at ~1M total events, or about 1/10 that in this centrality range

q₂ resolution **Comparing east and west EPD q**₂

Shockingly uncorrelated! Since EP Ψ is built from Q₂, and we have a correlation there, let's go back to the beginning and build up the EP Ψ from scratch Isaac Mooney (Yale/BNL)

FCV 3/15/2023

Q_{2,x,y} (lack of) correlation*

Qs (no multiplicity scaling) are also uncorrelated between EPD-E and EPD-W — how do we get from here to EP correlation?

Isaac Mooney (Yale/BNL)

*See backup slide for small update about these plots

Multiplicity **Truncated nMIP summed signal**

There is a correlation here, at least. But this doesn't propagate to Ψ , right?

EP from scratch $\Psi \sim \operatorname{arctan}(Q_{2,y}/Q_{2,x})$

Centrality 20-35%

Similar level of correlation to EP angles in east and west

...despite arguments being un(anti?)correlated

Sanity check Using fake uncorrelated data

Doesn't seem to be what's happening with the atan2() of the real data [or is it?], suggesting some real correlation there

Additional checks Is q₂ from EPD-E or W correlated with TPC?

No. So it's not that one half of the EPD is just wrong somehow.

Centrality 20-35% $\mathbf{q}_2^{\mathrm{TPC}}$ 2.5 1.5 Ο Ο Ο 0 0 \bigcirc Ο Ο Ο Ο \bigcirc 0.5 0.5 2.5 Ό 1.5 2 q^{EPD-W}₂

TPC self-correlation?

0 > , η 3.5 q₂TPC 3 2.5 2 1.5 0.5 0 0.5 1.5 **N**

Additionally, Tristan Protzman from HP-PWG saw no correlation even between the two halves of the TPC, with independent code. Must not be understanding something!

Isaac Mooney (Yale/BNL)

FCV 3/15/2023

TPC q2, letal<0.4 yx projection

Additional checks EP resolution as a function of q₂

Do seem to improve EP resolution with increasing q_2 where not statistics-limited ($q_2 < 5$ here) as expected...not sure how this is possible

Isaac Mooney (Yale/BNL)

Technicalities for experts

- data
- Using StEpdEpInfo functionality to obtain these quantities. E.g. StEpdEpInfo result = mEpFinder->Results(mEpdHits,PV,cent16), where mEpFinder is an instance of StEpdEpFinder
 - EP: result.EastPhiWeightedAndShiftedPsi(2)
 - want at this stage.]
 - q₂: sqrt(pow(result.WestPhiWeightedQ(2).X(), 2) + ed(2)) [to end with overall $1/\sqrt{M}$ normalization]

- Running the code 3 times to get ϕ weighting and Ψ shifting and then look at the

• Q_{2,x}: result.WestPhiWeightedQ(2).X()* result.WestSumWeightsPhiWeighted(2) [because the code seems to normalize by 1/M [I. 269 here], which we don't

pow(result.WestPhiWeightedQ(2).Y(),2))*sqrt(result.WestSumWeightsPhiWeight

Isaac Mooney (Yale/BNL)

All comments are appreciated!

Update: Wrong axes on s. 5

I think I wanted -300 to 300 but typo'd to -30 to 30. When zooming out (after running for about 100k events total just to get an idea) if there's a correlation it's miniscule.

Isaac Mooney (Yale/BNL)