1	Estimate of Background Baseline and Upper Limit on the Chiral
2	Magnetic Effect in Isobar Collisions at $\sqrt{s_{\text{NN}}} = 200$ GeV from
3	\mathbf{STAR}
4	Yicheng Feng*
5	(for the STAR Collaboration)
6	(Dated: September 22, 2023)
7	Abstract
8	We have reported the isobar $\binom{96}{44}$ Ru + $\frac{96}{44}$ Ru, $\frac{96}{40}$ Zr + $\frac{96}{40}$ Zr) results from a blind analysis on the
9	search for the chiral magnetic effect (CME) [1]. The Ru+Ru to Zr+Zr ratio of the CME-sensitive
10	charge-dependent azimuthal correlator $(\Delta \gamma)$, normalized by elliptic anisotropy (v_2) , is observed to
11	be close to but systematically larger than the inverse multiplicity $(1/N)$ ratio. The background
12	baseline for of the isobar ratio $Y = \frac{(\Delta \gamma / v_2)^{\text{Ru}}}{(\Delta \gamma / v_2)^{\text{Zr}}}$ is naively expected anticipated to be $\frac{(1/N)^{\text{Ru}}}{(1/N)^{\text{Zr}}}$
13	however, However, genuine two- and three-particle correlations are expected to alter it. We
14	estimate the contributions from those correlations to have the potential to alter this baseline.
15	We calculate the influence of these correlations on Y , utilizing the STAR isobar data as well
16	as by incorporating data from STAR isobar experiments and HIJING simulations. Including
17	those By accounting for these contributions, we arrive at a final background baseline establish a
18	<u>comprehensive background reference</u> for Y . The background baseline is found to be consistent
19	with the isobar data, and an upper limit of \sim 10% at 95% confidence level is extracted on the
20	CME signal fraction in the $\Delta \gamma$ measurement in isobar collisions at 200 GeV [2].
21	

- ²² [1] STAR Collaboration, Phys. Rev. C **105**, 014901 (2022)
- 23 [2] STAR Collaboration, arXiv:2308.16846

^{*} feng216@purdue.edu