Nonflow to the U-Shape Paper
A Hijing model study
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HIJING v, anisotropy

* Hijing is not a hydro model. All v, in Hijing is nonflow.

* Absolutely no question in HIJING that there’s nonflow and it is relatively large (likely lower limit for real data)

* Interested in nonflow, so use simplest WS densities, spherical nuclei for both Au and U.

U-shape paper

a

[ ...
L . ..
- et

) X 10°

2
2

(v

)

-

I~ 2subevent method ‘
02< R 3 GeVic ‘
—&- AutAu ‘
8- U+U

-l PUREPURPU [ R U [ T—— |

60 40 20

0%

v,)

HIJING quenching on
107 3

1 0—4 -

: AuAu central
><I nonflow = 12%
T " " | " " "

—e— Au+Au, 200GeV

s U+U, 193GeV

HUING

1../'

20 0

cenyéy (%)

UU central

nonflow = 6%

< 0.08
=" - HIJING quenching on
< HIING
T 006 _FE =
e | 1y
004 B —o—e— -
I TPC subevent rnonflow
- reduction: only]12%
r —e— Au+Au, 200GeV
—o— U+U,193GeV ]
1 L ! | ! i ! | | ! 1
%0 40 20 0

centrality (%)
Large away side, fat near-side



p-p; and v,-p; correlations
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_ _ Positive correlations between V, and 6p;. Possible sources:
Dynafmlcal Pr quc.:tuatlons _ * Resonance decays: larger p,, smaller opening angle, larger V,
Possible source: jet production .

Jet production: more jets, larger p; and larger V,
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Fig. 5| Impact of non-flow correlations. The centrality dependence of ps = WG in Au+Au (a) and®®
v3 PT

U+U (b) collisions, where (1*%6pr) is calculated using the standard, two-subevent and three-subevent correlation
methods. The components in the denominator (v%) and ((5p1- )2) are calculated using the two-subevent method.
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x methods [47]. In the two-subevent method, particles
s2 i and j are taken from ranges of -1 < n; < -0.1 and
s3 0.1 < 7; < 1, while particle k& can be taken from either
s2e subevents. In the three-subevent method, all three par-
s2s ticles 4, j and k are taken from distinct 7 ranges, namely
s —1 <7 < =04, 04 <n; <1, and || < 0.3. The inclu-
27 sion of a pseudorapidity gap between the particle pairs
s2s Or triplets suppresses the short-range “non-flow” correla-
s tions arising from resonance decays and jets [74].

s2 The results in Fig. 4 are obtained using the two-
sa3 subevent method. However, as discussed earlier, (vgép—r)
su has contributions from non-flow correlations, which can
sis be explored by comparing results obtained from the stan-
sss dard, two-subevent and three-subevent methods. The re-
se7 sults for po are shown in Fig. 5. In this figure, (15) and
ss ((dpr)?) are calculated using the two-subevent method,
si SO any variations in po arise only from (t'-%(i]rr).
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Modest differences are observed between the standard
method and subvent methods for all observables, particu-
larly towards the peripheral collisions. Some of these dif-
ferences are attributable to non-flow contributions, while
the remainder could arise from longitudinal flow decor-
relations. We obtain default results as the average of the
standard method and two-subevent method. and half of
the differences are assigned as systematic uncertainties.

They are 1-2% for (v3), 1-3% for {(dpr)?), and 2-4% for

(1*%(5})1-) in the 0-40% centrality range, respectively.

The total systematic uncertainties are combined in
quadrature from different sources, and in some cases,
they are larger than the statistical uncertainties. The to-
tal uncertainties of (v3), {(pr)?), and (v3dpr) are 2.5-

4%, 2-5%, and 4-10%, respectively. Note that for the

ratios between U+4U and Au+Au, their uncertainties are
evaluated for each source and combined in quadrature to
form the total systematic uncertainties. This process re-
sults in a partial cancellation of the uncertainties between
the two systems.

According to HIJING, TPC subevent nonflow reduction is only 12%. Half of that
was taken as syst. error in the U-shape paper, and that corresponded to syst.
errors 1-2% for v,?, 1-3% for (dp+)?, 2-4% for v,% 5p;in the 0-40% centrality.
Taking HIJING full nonflow (x15 larger), the syst. errors would be 15-30% for v,?,
15-45% for (dp;)?, 30-60% for v,25p;. These would dominate the total error.
This is actually syst. error, NOT syst. uncertainty.

These are estimated from HIJING + paper propositions of nonflow effects.

Real data may be different, but the conclusion should be robust that nonflow is

a big issue for this paper.
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Effect of
nonflow
subtraction

by Hijing

20% nonflow difference due
to multiplicity difference.

If nonflow is 12% (according
to HIJING), then 2% effect.

In reality, worse: nonflow is
smaller in UU (deformity).
UU/AuAu difference is
larger, actually 6%.

Data nonflow 20-30%, so
effect could be larger.
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Conclusions

* Nonflow is large; Hijing indicates ~10%, and subevent reduction is small
e U-shape paper nonflow syst. uncertainties severely underestimated
* Nonflow is a syst. error, rather than a syst. uncertainty

* Correcting for nonflow according to Hijing would cause the data points to be off by
several times the estimated nonflow syst. uncertainty, even beyond the total
uncertainty

* The U-shape paper results are therefore premature

* Nonflow/non-hydro effects must be corrected, and faithful syst. uncertainty be
assessed, before data are compared to hydro to extract physics



