Centrality dependence of Λ^0 and $\overline{\Lambda}^0$ directed flow at BES energies

Xiatong Wu FCV PWG Meeting 02/07/2024

Past presentation: FCV Parallel Section, STAR Collab. Meeting Oct 2023 <u>https://drupal.star.bnl.gov/STAR/system/files/xiatong_star_colab_oct.pdf</u>

College | Physical Sciences

Physics & Astronomy

Motivation

- STAR v_1 paper¹ shows that protons and kaons $\Delta(dv_1/dy)$ values change signs from central to peripheral
 - Qualitatively consistent with transported quark + EM effects dominated by Faraday induction/Coulomb effect

□ Is $\Lambda^0/\overline{\Lambda}^0$ subject to the same effects?

- When Λ⁰/Λ
 ⁰ is formed, magnetic field may no longer exist, but its constituent quarks are subject to EM effects
- Assuming coalescence sum rule,

 v_1 splitting between Λ^0 and $\overline{\Lambda}^0$ may be considered the combination of kaon and proton v_1 splitting

Event selection and event plane reconstruction

Event cut:

- $|v_z| < 70 \text{ cm}$
- $\sqrt{\mathbf{v}_x^2 + \mathbf{v}_y^2} < 2 \text{ cm}$
- Official bad runs and pile up cut

Track cut:

- nHitsFit > 15
- 0.04 < dEdxError < 0.12</p>
- KFParticle PID criteria
- Event plane reconstruction:
 - Reconstructed using EPD
 - In addition to standard StEpdEpFinder phi-weighting and EP-flattening:
 - Using v₁ as eta weights for 1st order EP
 - Flattening EP distributions for each run day

$\Lambda^0/\overline{\Lambda}^0$ reconstruction and flow extraction

- $\Lambda/\overline{\Lambda}$ reconstructed using KFParticle:
 - SetChiPrimaryCut(10)
 - SetLCut(1.0)
- Fitted with double Gaussian+2nd order poly
- $0.4 < p_T < 2.8 \text{ GeV/c}$

• $v_{1,bkg}$ parametrized by first order poly

$\Lambda^0/\overline{\Lambda}^0 v_1(y)$

$\Lambda^0/\overline{\Lambda}^0 v_1(y)$

$\Lambda^0/\overline{\Lambda}^0 \Delta(dv_1/dy)$: Coalescence sum rule

Efficiency Correction

Summary

- □ We presented efficiency corrected $\Lambda^0/\overline{\Lambda}^0 v_1$ as a function of centrality at $\sqrt{s_{NN}} = 19.6, 27$ GeV. Negative $\Delta(dv_1/dy)$ observed at peripheral.
- Centrality dependence agrees with expectation from coalescence sum rule (combination of proton and kaon splitting)

Next:

Scan the BES energies (start with 7.7 GeV collider dataset which has large v_1)

 $\Lambda/\overline{\Lambda} v_1$ before efficiency correction consistent with another STAR paper

Method:

profiles or histograms (cen, y) = $\sum_{p_T \text{ bin}} \text{ profiles or histograms (cen, y, p_T \text{ bin})} \times \frac{1}{\text{Efficiency}(p_T)}$

- Fill $\Lambda/\overline{\Lambda}$ invariant mass histograms and v_1 vs. inv. mass profiles in 9 (cen) x 10 (y) x 24 (p_T) = 2160 bins
- After obtaining Λ/Λ reco. efficiencies, for each centrality and y bin, combine the histograms/profiles of each p_T bin using inverse of efficiencies as weights
- Fit inv. mass distribution for each centrality and y bin, then extract v_1 using v_1 vs M_{inv} method.

Error Treatment:

• For combined v_1 profiles after efficiency correction, use original N_{eff} (that is, before efficiency correction) for error calculation.

a₁(=< sin(φ – Ψ) >) splitting serves as a benchmark of residual detector effects.
 Consistency with 0 suggests proper detector correction

 $\square \Lambda^0 / \overline{\Lambda}^0 v_1$ splitting also shows clear centrality dependence:

- Affected by transported quarks in central events
- Significant negative values (2.5σ) in peripheral events, suggesting dominance of Faraday+Coulomb

□ $\Lambda^0/\overline{\Lambda}^0 v_1$ splitting agrees well with the naïve expectation from coalescence sum rule

❑ Suggests that ∧ may also be subject to EM effects created in the QGP due to quark coalescence