68th DAE Symposium on Nuclear Physics December 07 - 11, 2024 Indian Institute of Technology Roorkee, Uttarakhand, India

Measurement of directed flow in the high-baryon density region at RHIC-STAR

Sharang Rav Sharma (for the STAR Collaboration) Indian Institute of Science Education and Research (IISER) Tirupati, India

- Introduction
- STAR Experiment
- Results and Discussion
 - > Directed flow (v_1)
 - Experimental Measurements
 - Model Calculations

Summary

Introduction

At very high temperature/energy density a deconfined phase of quarks and gluons is expected to form \rightarrow Quark-Gluon Plasma (QGP)

RHIC BES Program:

- Predicted first-order phase transition
- QCD critical end point
- Turn-off of QGP signatures

Phase-I

 $\sqrt{s_{NN}} = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200$ GeV (COL)

Phase-II

 $\sqrt{s_{NN}} = 7.7, 9.2, 11.5, 14.6, 19.6, 27 \text{ and } 54.4 \text{ GeV}$ (COL) $\sqrt{s_{NN}} = 3.0, 3.2, 3.5, 3.9, 4.5, 5.2, 6.2, 7.7, 9.1, 11.5,$

and 13.7 GeV (FXT)

STAR Experiment

C. Yang et al., JINST 15 C07040 (2020)

Solenoidal Tracker At RHIC (STAR) is one of the detector

systems at RHIC consisting of several sub-detectors

Fixed-Target (FXT) program at STAR \rightarrow low center-of-mass energies and high baryon density region

Fixed-target mode

Nuclear Phy A 808-811 (2017)

Collision energy	Events analyzed
3.2 GeV	220 M
3.5 GeV	110 M
3.9 GeV	110 M
4.5 GeV	100 M

Sharang Rav Sharma

Particle Identification

Sharang Rav Sharma

DAE Symposium on Nuclear Physics 2024

Anisotropic Flow

Sharang Rav Sharma

STAR

DAE Symposium on Nuclear Physics 2024

6

Motivation for v₁ **measurement**

Phys. Rev. Lett. 120, 062301 (2018) Phys. Rev. C 102, 044906 (2020)

- dv₁/dy for proton contrary to mesons showed a non-monotonic trend ⇒ Change of sign
- Net particle \rightarrow the excess of a particle over antiparticle \rightarrow contribution of transported quarks w.r.t produced
- Minimum net-p at 11.5 19.6 GeV ⇒ Signature of 1st
 order phase transition
 - No minima for net-K
- Light nuclei $d(v_1/A)/dy$ within systematic and statistical uncertainties \Rightarrow Approximate mass no. scaling

Sharang Rav Sharma

DAE Symposium on Nuclear Physics 2024

7

STAR Collision energy dependence of dv₁/dy

• Increasing collision energy \rightarrow decreasing v₁ slope for the studied energies

- > $dv_1/dy|_{\pi^+}$ is negative whereas $dv_1/dy|_{\pi^-}$ is positive \implies Spectator shadowing and coulombic interactions
- Minimum net-p at 11.5 19.6 GeV whereas minimum net-K at 4.5 7.7 GeV
- Approximate mass no. scaling is observed in the v_1 slope \implies Nucleon coalescence

Phys. Rev. Lett. 120, 062301 (2018), Phys. Rev. C 102, 044906 (2020)

Sharang Rav Sharma

DAE Symposium on Nuclear Physics 2024

JAM model calculations

Sharang Rav Sharma

DAE Symposium on Nuclear Physics 2024

JAM model calculations

- Magnitude of v_1 increases with increasing rapidity
- JAM MD2 with coalescence provides good description of the data

JET AA Microscopic Transportation Model (JAM2)

MD2: momentum dependent mean-field potential Incompressibility constant: $\kappa = 380$ MeV

Anti-flow of mesons at low p_T

STAR

- Negative dv_1/dy at low p_T for mesons \rightarrow Anti-flow at low energies (3.0 - 4.5 GeV)
- JAM Cascade model \rightarrow with spectators able to reproduce the anti-flow at low $p_T \Rightarrow$ No requirement of Kaon potential

P. Chung et al. (E895 Collaboration), Phys. Rev. Lett. 85, 940 (2000)

Sharang Rav Sharma

11

- \Box The magnitude of the v₁ slope decreases with increasing collision energy
- □ $dv_1/dy|_{\pi^+}$ is negative whereas $dv_1/dy|_{\pi^-}$ is positive → Spectator shadowing and coulombic interactions
- □ dv_1/dy for both net-kaon and net-proton shows a minimum → Might be a signature of 1st order phase transition
- □ Approximate mass no. scaling is observed in the v_1 slope for light nuclei → Nucleon coalescence
- JAM mean-field gives a better description to the experimental data for identified hadrons as well as light nuclei (with coalescence afterburner)
- □ JAM-Cascade model with spectators able to reproduce the anti-flow at low p_T ⇒ No requirement of Kaon potential

Thank you for your attention!!

