Fast Scanning Diamond Detector ASSRC Review

SBIR-DOE Project by Applied Diamond, Inc

Valeriy Konovalov [Applied Diamond, Inc] Toby Miller [BNL] 10/8/20

Introduction

• Description

Fast scanning in-vacuum diamond multi-pixel strip detector for electron beam halo and profile measurements

This diamond detector will have

- a fast time response
- high radiation stability
- operate at high temperatures
- Purpose direct measurement of:
 - eBeam Halo
 - eBeam profile by fast scanning through the beam's core
 - eBeam temporal structure
- Schedule
 - Project started February
 - ATF Testing September
 - CeC installation December

Review of Hazards

To Personnel

Mechanical Startle **High Voltage** Radiation

To Equipment

Vibrational Thermal outgassing **Debris from damage** Beam impedance **Radiation Damage**

2020 Diagnostics Beamline

- HP Beam Dump LP Beam Dump CeC PM **ERL** Dipole CeC BPM CeC BPM New High Power Beam Dump New 1.3 GHz TDC New Power Amplifier New Profile Monitor YAGs (2) BPMs (3) **Re-use ERL Dipole** 1.3 GHz Cavity **Re-use CeC Quads** Re-use CeC LE Beam Dump **New ICT** monitor system U.S. DEPARTMENT OF
- Cliff presented the beam line layout
- Diamond detector is upstream of the TROG

* TROG: Temporally Resolved Optical Gating, for an electro-optic longitudinal profile

Diamond Detector

- Polycrystalline diamond plate: 46 x 19 x 0.1 mm •
- Boron doped electrodes: ۲
 - 1 x Horizontal pick-up
 - 8 x Vertical pick-ups
 - 9 x 50 Ω transmission lines
- Diamond brazed to WC interface attached to copper support rod ۲
- Copper rod provides heat sink ٠
- 50 Ω transmission lines on aluminum-nitride PCB to vacuum feedthrough
 - Not shown here •
 - Dedicated R&D efforts planned for this
- 10 SMB coaxial feedthroughs provide 9 signals + 1 isolated • ground
- Ultra-fast linear actuator, speed up to 1 m/s •
- Detector insertion time into the beam core, about 20-50 ms. •
- Thermal Outgassing Hazard
 - Materials are suitable for UHV & high temperature and include:
 - Diamond
 - **Tungsten Carbide**
 - Copper
 - Kapton
 - SS signal feedthroughs with alumina insulator

STROKE = 52mm (diamond edge at the center)

STROKE = 61mm (fully inserted diamond, return point)

Thermal Modeling

- Thermal simulations were made by Steve Bellavia using Creo 6 and brought into ANSYS 2020 R1 for both steady state and transient thermal analysis.
- CeC beam conditions were:
 - 1 nC pulses @ 78 kHz
 - 5 15 MeV
- Test configurations were:
 - Fixed
 - Normal •
 - 45 degrees
 - Scanning
 - Normal
 - 45 degrees
- Final results showed
 - < 80C temperature rise under the worse conditions.
 - Scanning detector's temperature recovered in 5 10 seconds.
- Damage debris Hazard
 - Diamond shows negligible thermal shock due to low temperature rise

orientation.

shown.

with diamond detector. Normal to beam

Steady state temperature rise with CW beam, tilted

Vacuum Chamber

- 6-inch vacuum cube
 - 1 x 6" ITO coated Viewport
 - 2 x 6" to 4.5" conical reducers
 - 2 x 6" blank flanges
 - 1 x 6" to 2.75" Z/L reducer
- Actuator
 - High speed actuation up to 1m/s with 1.5kg load
 - 100 mm stroke
 - No port aligner for max rigidity
 - Custom feedthrough 2.75"CF
 - ¾" Cu support rod
 - 10 x SMB signal coaxial feedthroughs
- Vibration
 - High speed actuation may cause significant vibration
 - Reinforced stand is required
- Support
 - Actuator support frame (extra sturdy for vibration damping)
 - Chamber cradle adapter
 - Threaded support post

Fast Linear Actuator

- Pinch Hazard:
 - All moving parts behind covers
- Startle Hazard:
 - Servo motor is very quite
- Applied Motion Servo drive
 - 3-phase 400W motor
 - Controller SV2A3-Q-AE
 - Tested with >100 m of cable with good results
 - Linear Position
 - Infinite resolution
 - Up to 60V operation (for better signal-to-noise)
 - Analog output digitized along with diamond detector signal by F460 local electrometer/digitizer
- Motion Profile to scan through beam
 - Move in at max acc. and move out max acc.

Motion profile for max speed 1 m/s & high acceleration.

Vibration Modal Analysis

- Inertial forces from 3kg @ 2 g acceleration.
- Modal analysis ran by Cliff Brutus with the goal of reducing the mechanical resonances to below 100 Hz. lacksquare
- Many mechanical configurations were tried.
- Most cost-effective approach was Aluminum Rexroth stand reinforced by steel plates with a minimum f = 80 Hz.
- Vibrational Hazard
 - This design limits vibrational "noise" from affecting nearby devices (such as the TROG).

Exaggerated deformations showing vibrational modes and resonant frequencies.

Rexroth stand with steel plates for reinforcement

F460 provides Bias

- Bias voltage up to 500V
- High Voltage Hazard
 - SHV connector output
 - At-risk connectors need heatshrink & HV label:
 - SMB connector on detector
 - SMA connector on amplifier
- System will first be used without bias connected.
 - Tests at the ATF will show if it is necessary.

Radiation Generation

- Diamond had direct interaction with electron beam
- Interaction calculations made by Peter T. for thermal load estimate
 - Need to apply to radiation generation estimate
- Radiation Hazard:
 - Hazard to Personnel
 - Tunnel is closed when device interacts with beam
 - Hazard to Equipment
 - Frequency of operation can be limited to as a function of integrated dose generated
 - There will be one dedicated PMT

Electrical response and Wakefield Impedance Simulations

- Configuration: •
 - Detector is held by a long copper stalk through a bellows, making a coaxial oscillating structure.
 - Chamber expands abruptly from a small beam pipe.
- Electrical response to a beam pulse was simulated in Particle Studio by Peter T.
 - With a bunch frequency of 78 kHz, there is enough time for the induced oscillations to decay before the next bunch arrives, even without any ferrite.
- Wakefield impedance to the beam was simulated by Peter T. •
 - The wake effects are not significant given the relatively large amount of time between 78kHz bunches.
- Beam Impedance Hazard •
 - The wake effects will probably have no significant impact on the bunch given the single pass operation of the CeC diagnostic line.

- Detector voltage with respect to ground for 5nC, 100ps FWHM bunches.
- With 1.5 nC instead of 5, the amplitudes will be correspondingly smaller.

Conclusion

Summary of Hazards

- **To Personnel**
 - Mechanical All moving parts are behind covers
 - Startle Servo motor is very quite
 - High Voltage:
 - SHV connector output from source
 - SMB & SMA connectors need heat-shrink & HV label
 - Radiation Tunnel is closed when device interacts with beam
- **To Equipment** •
 - Vibrational A reinforced support design limits vibrational "noise" from affecting nearby devices.
 - Thermal outgassing Materials are suitable for UHV & high temperature
 - Debris from damage Diamond shows negligible thermal shock due to low temperature rise
 - Beam impedance significant impact with the long 12.8 µs space between bunches
 - Radiation Damage Frequency of operation can be limited to as a function of integrated dose generated