

STAR Forward Silicon Tracker: Summary of Cosmic Ray Test Stand

Gavin Wilks University of Illinois at Chicago

Various FST Cosmic Ray Test Stand analyses can be found at these links: <u>https://starcluster.phy.uic.edu/twiki/bin/view/STAR/FSTCosmicTestStand</u> <u>https://www4.rcf.bnl.gov/~sunxuhit/</u> <u>https://www4.rcf.bnl.gov/~gwilks3/</u>

FST Cosmic Ray Test Stand

- Characterize prototype FST module performance.
 - Detection efficiency
 - Matched track efficiency
 - Spatial resolution
 - Signal

STAR

- Noise
- Find dependencies on:
 - Voltage
 - Clustering method
 - Physical components
 - Additional wire-bonds/encapsulation

FST Cosmic Ray Test Stand

- Consists of 2 Inner Silicon Tracker (IST) staves aligned with FST module
- Tracking Method
 - Find all simple clusters in IST staves 1 & 2
 - Project track to FST module (x_{proj}, y_{proj})
 - Find clusters on FST using scan and simple algorithms (x,y)
 - Difference in projected and measured position on FST provides estimate of resolution (x-x_{proj},y-y_{proj})

Simple Clustering

- 1. Find all hits (ADC>4*noise in 2 time bins) on FST.
- 2. Group neighboring hits into clusters.
- 3. Cluster position is given by the ADC-weighted center of the hits.

• Thresholds were chosen by an optimal combination of S/N, resolution, detection efficiency and matching efficiency.

Scan Clustering

- Find all seed hits (ADC>4*noise in 2 time bins) and recover hits with ADC>2.5*noise in 2 time bins or ADC>3.5*noise in 1 time bin in the same event window.
- 2. Group all the hits in the same and neighboring φ -segmentations to a seed hit into clusters.
- 3. Cluster's radial position is determined by the largest radius and φ position by the ADC-weighted center of the hits.

FST Noise vs. Voltage (Module 3)

- All forms of noise (total, random and common mode) decrease with voltage.
- As Rstrip number increases, all noise types decrease for both inner and outer sensors.

FST Detection Efficiency (Scan Clusters)

- Definition:
 - Projected position is within FST acceptance.
 - Measured cluster is within FST acceptance.
- Inner sensor $\ge 95\%$ for most of r and φ range at each voltage.
- Outer sensors:
 - Greater detection at higher voltages for lower projected r.
 - Similar detection at each voltage for greater projected r.
 - Higher voltage provides greater detection in φ .
- Module 4 results are shown, and results are similar for FST Module 3

FST Matching Efficiency

- **Definition:**
 - Projected position is within FST acceptance.
 - Measured cluster is within:
 - 1.5 Rstrip lengths of projected position.
 - ~ 2.5-10 ϕ segmentations depending on Rstrip.
- Matching efficiency with scan clustering outperforms simple clustering.
- Scan clustering improves matching efficiency for greater radial position (outer Rstrips).
- Module 4 results are shown, and results are similar for FST Module 3

FST Spatial Resolution (Radial)

- Scan clustering reduces negative tail in ٠ residual distribution.
 - Greater resolution for radial position • primarily for inner sensor (more statistics for inner sensor).
- Variation due to voltage is generally consistent ٠ within statistical uncertainties

Module 4 Resolution

	70V (mm)	100V (mm)	140V (mm)
Scan	10.78 ± 0.10	10.91 ± 0.11	10.79 ± 0.11
Simple	12.34 ± 0.15	12.00 ± 0.20	12.25 ± 0.16

	70V (mm)	100V (mm)	140V (mm)
Scan	10.26 ± 0.14	9.77 ± 0.14	9.95 ± 0.15
Simple	10.76 ± 0.16	10.33 ± 0.16	10.13 ± 0.16

	70V (mm)	100V (mm)	140V (mm)
Scan	11.32 ± 0.26	10.83 ± 0.24	10.36 ± 0.22
Simple	11.91 ± 0.31	11.12 ± 0.27	10.96 ± 0.26

Module 3 Resolution

Scan

Simple

70V (mm)

 10.88 ± 0.10

 12.02 ± 0.14

Inner Sensor

Outer Sensor 1		70V (mm)	100V (mm)	140V (mm)
	Scan	11.11 ± 0.20	10.06 ± 0.10	11.13 ± 0.16
	Simple	11.30 ± 0.20	10.80 ± 0.20	11.29 ± 0.17

100V (mm)

 11.02 ± 0.11

 12.25 ± 0.16

140V (mm)

 11.37 ± 0.12

 12.36 ± 0.16

Outer	
Sensor	2

		70V (mm)	100V (mm)	140V (mm)
uter sor 2	Scan	10.62 ± 0.28	11.07 ± 0.31	11.05 ± 0.27
.801 2	Simple	11.04 ± 0.32	11.70 ± 0.40	11.45 ± 0.32

FST Spatial Resolution (Radial)

- Cross talk in Rstrips leading to detection on other Rstrips.
 - More prominent for outer Rstrips.
- Scan clustering reduces negative tail in residual distribution
 - Cross talk signal reduced for outer Rstrips.

FST Spatial Resolution (Azimuthal)

- Variations due to voltage and clustering algorithm are generally consistent within statistical uncertainties.
- Results are consistent in module 3 and other sensors.

Resolution Summary (Module 4)

	70V (rad)	100V (rad)	140V (rad)
Scan	7.136E-3 ± 0.087E-3	7.079E-3 ± 0.093E-3	7.193E-3 ± 0.100E-3
Simple	7.076E-3 ± 0.088E-3	7.108E-3 ± 0.094E-3	7.111E-3 ± 0.101E-3

Toy MC Simulation

Procedure

- 1. Generate random angle for incident cosmic ray.
- 2. Create track through 2 IST and FST Module.
- 3. Use readout pixel position on IST staves and project track (projected FST position).
- 4. Use projected Rstrip to determine if readout position (original track) is shifted to another Rstrip using measured cross talk rates.
- 5. Drop FST hit based on projected Rstrip efficiency.
- Qualitatively reproduces residual distributions from Test Stand.
 - Cross talk, detection efficiency and IST projection error.
 - Overall distribution and individual Rstrip distributions.

FST Wire-bond Study

- Study of FST Module 3 and Module 4 before and after wire-bond encapsulation.
 - Module 4 has additional wire-bonds between sensor guard ring and hybrid bias pads for data with encapsulation.

Module 3

Mean S/N Summary (70V)

Enc.	Inner Sensor	Outer Sensor 1	Outer Sensor 2
w/o	28.08 ± 0.12	24.63 ± 0.16	23.21 ± 0.23
w/	28.19 ± 0.14	25.61 ± 0.16	24.86 ± 0.23

Mean S/N Summary (140V)

Enc.	Inner Sensor	Outer Sensor 1	Outer Sensor 2
w/o	30.43 ± 0.14	30.20 ± 0.17	29.39 ± 0.26
w/	31.06 ± 0.14	33.00 ± 0.17	29.87 ± 0.25

Module 4

Mean S/N Summary (70V)

Enc.	Inner Sensor	Outer Sensor 1	Outer Sensor 2
w/o	27.22 ± 0.12	22.39 ± 0.12	23.80 ± 0.23
w/	29.22 ± 0.14	23.94 ± 0.16	24.89 ± 0.22

Mean S/N Summary (140V)

Enc.	Inner Sensor	Outer Sensor 1	Outer Sensor 2
w/o	29.92 ± 0.14	24.92 ± 0.19	26.90 ± 0.25
w/	31.56 ± 0.14	26.32 ± 0.17	29.11 ± 0.25

- Encapsulation in module 3 provides higher mean S/N, in some sensors at 70V and 140V.
- Addition of wire-bonds and encapsulation in module 4 increases mean S/N significantly for all ٠ sensors at both 70V and 140V.
- No noticeable effects on resolution, detection efficiency or matching efficiency. ٠

Summary and Outlook

- Efficiencies
 - Higher voltage improves *detection efficiency* over φ and greater r region on outer sensors.
 - Scan Clustering improves *matched track efficiency* for greater projected radial positions and all φ .
- Increasing voltage also decreases noise for all sensors.
- Spatial Resolution
 - Scan clustering provides greater radial resolution over simple clustering.
 - Variations from voltage are mostly within statistical uncertainties.
 - Cross talk present between Rstrips.
- Toy MC qualitatively reproduces residual distributions for position.
 - Accounts for cross talk, detection efficiency and IST projection error.
- Addition of wire-bonds and encapsulation increases mean S/N.
- Apply measurements of prototype module performance to STAR simulation.
 - Effect on momentum resolution.

11/01/2020