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For the search of the chiral magnetic effect (CME), STAR previously presented the results from
isobar collisions (9644Ru + 96

44Ru, 96
40Zr + 96

40Zr) obtained through a blind analysis. The ratio of results
in Ru+Ru to Zr+Zr collisions for the CME-sensitive charge-dependent azimuthal correlator (∆γ),
normalized by elliptic anisotropy (v2), was observed to be close to but systematically larger than the
inverse multiplicity ratio. The background baseline for the isobar ratio, Y = (∆γ/v2)

Ru

(∆γ/v2)Zr , is naively

expected to be (1/N)Ru

(1/N)Zr ; however, genuine two- and three-particle correlations are expected to alter
it. We estimate the contributions to Y from those correlations, utilizing both the isobar data and
hijing simulations. After including those contributions, we arrive at a final background baseline for
Y , which is consistent with the isobar data. We extract an upper limit for the CME fraction in the
∆γ measurement of approximately 10% at a 95% confidence level on in isobar collisions at √

snn =
200 GeV.

1. INTRODUCTION

The quantum chromodynamics (QCD) predicts vac-
uum fluctuations, rendering nonzero topological charges
in a local domain with odd P and CP symmetries [1–4],
which may be pertinent to the matter-antimatter asym-
metry of our universe [5]. As a result, there would be
more particles with one certain chirality than the other,
which is called chirality imbalance. If there is a strong
magnetic field, the spins of particles would be locked ei-
ther parallel or anti-parallel to the magnetic field direc-
tion, depending on their charges. Then, with the same
chirality imbalance and opposite spin directions, the pos-
itive and negative charged particles would have oppo-
site momentum directions. This charge separation phe-
nomenon is called the chiral magnetic effect (CME) [6].

In heavy-ion collisions, we refer to the collided nucle-
ons as participants and the others as spectators. From
the collision geometry, the magnetic field created by the
spectator protons is generally perpendicular to the reac-
tion plane (rp, spanned by the impact parameter and
beam direction), so the CME searches usually take rp as
the reference direction. The particle distribution can be
expanded w.r.t. rp in azimuth (ψrp) into a Fourier series

2π

N

dN
dϕ = 1+2v1 cos(ϕ−ψrp)+ 2v2 cos 2(ϕ−ψrp)+ . . . ,

(1)
where N is the number of particles and ϕ is the azimuthal
angle in the plane perpendicular to the beam axis.

The charge-dependent azimuthal correlator ∆γ is used
to measure the charge separation of CME [7]. Its defini-
tion is as follows:

γαβ ≡ ⟨cos(ϕα + ϕβ − 2ψrp)⟩ . (2)

Here, the subscripts α, β represent two different parti-
cles of interest (poi) in the same event, and their electric
charge signs determine whether the pair (αβ) is opposite-
sign (os) or same-sign (ss). For a given pair sign (os or
ss), the angle brackets ⟨· · · ⟩ represent the average over

those pairs within one event and then further averaged
over multiple events in each centrality. The signature of
CME is that γos > 0 and γss < 0 with the same magni-
tude [7]. However, there are correlation backgrounds that
can also cause the γ correlators to deviate from zero [7].
Many of these backgrounds are charge independent, such
as those arising from momentum conservation. In order
to remove those charge-independent backgrounds, the
difference between os and ss is computed as follows:

∆γ ≡ γos − γss . (3)

Experiments have focused on measuring the ∆γ observ-
able. Large signals of ∆γ have been measured at the
Relativistic Heavy-Ion Collider (RHIC) [8–16] and the
Large Hadron Collider (LHC) [17–20].

Although charge-independent backgrounds are can-
celed in ∆γ, backgrounds remain from charge-dependent
two-particle (2p) correlations coupled with elliptic flow
of those correlation sources such as resonance decays and
jets [7, 21–24]. These backgrounds can be expressed as

γbkgdos =
N2p

Nos
⟨cos(ϕα + ϕβ − 2ϕ2p)⟩2p v2,2p . (4)

Here, N2p, ϕ2p, and v2,2p represent the number, az-
imuthal angle, and elliptic flow parameter of those os
2p correlation sources (e.g., ρ resonances), respectively.
Elliptic flow v2 is defined as

v2 = ⟨cos(2ϕ− 2ψrp)⟩ , (5)

which is also a coefficient in Eq. (1). It has been found
that those backgrounds dominate charge-separation mea-
surements [16, 24].

To mitigate these backgrounds, STAR conducted ex-
periments of isobar collisions 96

44Ru+96
44Ru and 96

40Zr+96
40Zr

at √
sNN = 200 GeV in 2018 [25]. The choice of these

two isobaric species was based on the strategy of keep-
ing the background constant while changing the signal.
It was anticipated that the CME-related signal would
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be larger in Ru+Ru due to the larger number of pro-
tons creating a stronger magnetic field. It was also ini-
tially expected that with the same number of nucleons
in Zr and Ru, flow-related backgrounds would be the
same in the two species’ collisions, ideally with charge-
independent quantities like multiplicity and elliptic flow
(v2) the same between the two isobars. However, the
STAR data shows a few percent difference between the
two isobaric species for both quantities. This discrepancy
arises because Ru and Zr have different nuclear sizes and
structures, which were predicted by energy density func-
tional calculations [26–28]. For the charge-dependent and
CME-sensitive quantity, the STAR data show the isobar
ratio (Ru+Ru/Zr+Zr) of ∆γ/v2 below unity [25]. This
seems opposite to the initial expectation of larger CME
in Ru+Ru but, in fact, results from the different multi-
plicities. If the number of background correlation sources
is proportional to multiplicity (N), then background ∆γ
would be diluted by N because ∆γ is a pair-wide average
and the pair multiplicity Nos, Nss ∝ N2. Then, the naive
background baseline of (∆γ/v2)

Ru

(∆γ/v2)Zr would be (1/N)Ru

(1/N)Zr , and
Ref. [25] finds that the former is larger than the latter,
though with large uncertainties, suggesting a small CME
signal [29].

However, this 1/N scaling for ∆γ/v2 is approximate.
It assumes that the number of background sources is
proportional to multiplicity, N2p ∝ N . This assump-
tion may not hold for the two isobar collision systems
and may be violated differently in the two due to their
slightly different energy densities. A more precise way
of scaling may be to divide ∆γ/v2 by r = N2p/Nos
(Sec. 3.1). Then, the STAR data show the isobar ratio of
1
r∆γ/v2 below unity [25], indicating more complications
to be considered [30]. The fact that scaling by r does not
give the same result as scaling by multiplicity indicates
that the assumption of proportionality is not necessarily
valid–there are residual backgrounds in addition to the
naive baseline of unity.

Consequently, it is critical to pin down the exact back-
ground baseline in order to access information on the
CME from the ∆γ measurements in isobar collisions. It
is the goal of this paper

:::
and

::::
Ref.

:::::
[31] to arrive at a rig-

orous estimate of the background baseline and examine
what the isobar data entail with respect to the possi-
ble CME signal

:
.
:::::::::
Reference

:::::
[31]

::::::::::
summarizes

:::
the

::::::::
essential

:::::::
findings,

::::
and

::::
this

::::::
paper

:::::::
provides

:::::::::
necessary

:::::::
details

::
of

:::
the

:::::::
analysis

:::::
work.

2. BACKGROUND BASELINE

In heavy-ion experiments, rp is unknown. One often
reconstructs an event plane (ep) from the particle mo-
mentum distribution, taking this reconstructed ep as a
proxy for rp. More elegantly, one exploits particle cumu-
lants; instead of reconstructing an ep, one can calculate

v2 from the two-particle correlator

v∗2 =
√

⟨cos 2(ϕα − ϕβ)⟩ . (6)

This v2 measurement includes nonflow backgrounds, such
as two-particle correlations from jets or resonance decays,
whose contribution we quantify by

ϵnf =
v22,nf
v22

=
v∗2

2

v22
− 1 . (7)

Here, v∗2 stands for the measurement that includes non-
flow correlations unrelated to the global collision geom-
etry, while v2 refers to the true flow. Note that the cu-
mulant measurement of v∗2 is similar to that obtained by
reconstructing an ep, but with subtle differences [32, 33].
It should also be noted that the elliptic flow measured by
the ep method is also contaminated by nonflow, as the
ep is reconstructed using final-state particles [34]. How-
ever, the decomposition of nonflow from flow in the ep
method is less straightforward than that in the cumulant
method [35].

Similarly, instead of calculating the γ correlation using
Eq. 2, one can measure a three-particle (3p) correlator

C3,αβ = ⟨cos(ϕα + ϕβ − 2ϕc)⟩ . (8)

Here, c represents a third particle that is different from
α, β. The γ correlator can be calculated using γαβ =
C3,αβ/v2,c, where v2,c is the elliptic flow of particle of
type c, given by Eq. (5). Effectively, particle c serves as
the event plane, and its resolution is simply equal to the
particle’s elliptic flow v2,c. In practice, γ is determined
by dividing by the measured quantity v∗2 ,

γαβ = C3,αβ/v
∗
2 . (9)

The main background in C3 (= C3,os − C3,ss) arises
from the flow-induced background [16, 24]. In this sce-
nario, some of the poi’s are correlated with one another
via a 2p source and these 2p sources are all correlated
with each particle c through the global flow correlation.
This flow-induced background is described by Eq. (4). In
addition to this flow-induced background, there is con-
tamination in C3 from genuine 3p correlations, where
the three particles α, β and c are intrinsically correlated.
Thus, the background contributions to the 3p correlators
can be expressed as:

Cbkgd
3,os = Nss

Nos
γssv2,c +

N2p

Nos
C2p,osv2,2pv2,c +

N3p,os
NosNc

C3p,os ,

Cbkgd
3,ss = γssv2,c +

N3p,ss
NssNc

C3p,ss ,

(10)
where the first terms in both lines are the charge-
independent backgrounds, such as momentum conser-
vation, which will be largely canceled out when taking
os − ss. The shorthand notations stand for

C2p,os = ⟨cos(ϕα + ϕβ − 2ϕ2p)⟩2p,os ,

C3p,os = ⟨cos(ϕα + ϕβ − 2ϕc)⟩3p,os ,

C3p,ss = ⟨cos(ϕα + ϕβ − 2ϕc)⟩3p,ss

(11)
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where the average ⟨· · · ⟩2p,os runs only over the correlated
background pairs with parent cluster azimuth ϕ2p. The
averages ⟨· · · ⟩3p,os and ⟨· · · ⟩3p,ss run over only the corre-
lated background triplets, whose multiplicities are N3p,os
and N3p,ss, respectively. In other words, these quantities
characterize the angular properties of the correlated clus-
ters and are not diluted by combinatorial multiplicities.
In Eq. (10), the set of os pairs consists of two compo-
nents: the first component is the correlated 2p os pairs,
while the second component comprises the remaining os
pairs that are identical to the ss pairs (in terms of the γ
quantity). The number of correlated 2p pairs is denoted
by N2p = Nos −Nss. The correlated 3p triplets also con-
tribute nonflow background to ∆γ and are treated as a
separate term in Eq. (10). It is worth noting that the
v2’s in Eq. (10) are the true elliptic flows, as they arise
from the correlations between the common global sym-
metry of the correlated 2p source (v2,2p) and the particle
c (v2,c), giving rise to the contribution to C3. In this
study, v2,c = v2 because the c particles use the same cut
as poi.

The γ correlators are calculated from C3 by Eq. (9).
The backgrounds in ∆γ/v∗2 can be expressed using
Eq. (10) as

∆γbkgd
v∗2

=
C2p

N
· v

2
2

v∗22
+
C3p

N
· 1

Ncv∗22
. (12)

The first term comes from the two-particle (2p) nonflow
backgrounds (like resonance decay daughter pairs, and
os pairs from intra-jet correlation)

C2p

N
=
N2p

Nos

(
C2p,os

v2,2p
v2

− γss
v2

)
, (13)

where v2,2p is the elliptic flow parameter of the correlated
pairs (like resonance decays). The second term arises
from the three-particle (3p) nonflow backgrounds, such
as jets

C3p

N
=
N3p,os
Nos

C3p,os −
N3p,ss
Nss

C3p,ss , (14)

where the N is the multiplicity of poi, and Nc is that of
particle c (in this analysis N = Nc). Both the Eqs. (13)
and (14) have their corresponding ss contributions sub-
tracted from their os components, as how ∆γ is defined.

With this decomposition, the isobar ratio due to these
background sources can be calculated for ∆γ/v∗2 . After
approximation to the leading order, the expression be-
comes

Ybkgd ≡ (∆γbkgd/v
∗
2)

Ru

(∆γbkgd/v∗2)
Zr

≈ 1 +
δ(C2p/N)

C2p/N
− δϵnf

1 + ϵnf
+

1

1 +
Nv2

2

C3p/C2p

(
δC3p

C3p
− δC2p

C2p
− δN

N
− δv22

v22

)
, (15)

where δX ≡ XRu−XZr for any X = C3p, C2p, etc., while
all other quantities without “δ” refer to those in Zr+Zr.

We note that the details of 2p and 3p correlation
sources can be complicated. For example, besides 2- and
3-body decays of resonances, they can also come from
multi-particle decays of clusters or jets. The os and ss
background pairs, besides the extra os pairs from decays
of neutral objects, may still not be strictly symmetric
(e.g., decays from the ∆ resonances). In addition, the
decay kinematics themselves can be altered in heavy-ion
collisions, such as by the possible global spin alignment
of ρ mesons [36]. Our analysis formalisms, however, do
not rely on those details, but only on the overall os-ss
difference in the γ correlators and the overall nonflow
contribution to v∗2 .

3. ANALYSIS

In order to estimate the background baseline, we need
to analyze the isobar data to assess the quantities re-
quired by Eq. (15). Since the purpose is to estimate
the background in the measurements of the STAR isobar

blind analysis, we use the same datasets, follow the same
event and track selections, and apply identical analysis
cuts as described in Ref. [25].

The majority of the analysis cuts are the same for
all ∆γ/v2 measurements in the blind analysis. These
are as follows: On the event level, the minimum-bias
trigger is used–correlated hits in both Vertex Position
Detectors (VPD) within a time window. The primary
vertex reconstructed by the Time Projection Chamber
(TPC) [37, 38] is also required to have a longitudinal z
position between −35 cm and 25 cm (−35 < Vz < 25
cm) and a transverse position to be within 2 cm (V⊥ < 2
cm) with respect to the center of TPC. In addition, the
interaction position measured online by the Vertex Posi-
tion Detector (VPD) [39] is required to be within 5 cm
from the reconstructed primary vertex along the beam
(|Vz − V vpd

z | < 5 cm). On the track level, the recon-
structed particle tracks must have more than 15 space
points measured in the TPC. As the CME is a signal in
primordial particles, the track’s distance of closest ap-
proach to the primary vertex (DCA) is required to be
less than 3 cm (DCA < 3 cm). The particle transverse
momentum is restricted within 0.2 < pT < 2 GeV/c.
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The pseudorapidity range is limited within |η| < 1 for
the full-event analyses. For the subevent analyses, where
the event is divided into two subevents based on their
η ranges, the measurements in the STAR blind analy-
sis used slightly different ranges. However, for the esti-
mates reported in this paper, all subevent measurements
used the same η ranges; specifically, −1 < η < −0.1
was considered as the East subevent, and 0.1 < η < 1
was considered as the West subevent. The centrality is
defined by the number of tracks in the rapidity range
−0.5 < η < 0.5.

In the STAR blind analysis of the isobar data [25], a
total of seven ∆γ/v2 measurements were performed by
four research Groups. Among these measurements, four
utilized the two-particle cumulant method for the v2 mea-
surement and the three-particle cumulant method for the
∆γ measurement. The remaining three measurements
used the event-plane method. While both the cumulant
and event-plane methods produced similar results, the
event-plane method posed significantly more challenges
in distinguishing and accounting for nonflow contribu-
tions compared to the cumulant method, as aforemen-
tioned. For this reason, we concentrate on the former
four measurements, namely, the full-event measurements
from Group-2 and Group-3, and the subevent measure-
ments from Group-2 and Group-4. The analysis details
of the four measurements differ slightly, and those de-
tails are tabulated in the first block of Table I for the
corresponding measurements. In our background base-
line estimates for the four measurements, we maintain
consistency by using the identical analysis cuts for each
corresponding measurement. The block in Table I also
includes the results for the average over the 20-50% cen-
trality range for the isobar ratios of ∆γ/v2, denoted as
Y ≡

⟨
(∆γ/v2)

Ru

(∆γ/v2)Zr

⟩
, which were obtained from the STAR

blind analysis [25]. The average of each term in Eq. 15
over centrality bins is calculated separately using the in-
verse statistical uncertainty squared as weight, and then
summed together to get the background baseline.

Equation (15) suggests categorizing the nonflow con-
tributions to the background into three ingredients: (1)
δ(C2p/N)/(C2p/N) which characterizes the relative dif-
ference of flowing clusters between the two isobars, (2)
Differences that arise from using v∗2 rather than true flow
in the calculation of ∆γ, characterized by ϵnf , and (3) dif-
ferences in the relative amounts (or character) of three
particle clusters between the isobars. In the next section
we will discuss each of these three in turn.

3.1. Pair versus single multiplicity difference

The main background in a ∆γ measurement comes
from the charge-independent correlated pairs, such as res-
onance decays and intra-jet correlations. The number of
those pairs is denoted as N2p = Nos − Nss, the excess
of os pairs over ss, so the charge-independent part is re-

moved (similar to ∆γ = γos − γss). The relative excess
is

r =
N2p

Nos
=
Nos −Nss

Nos
. (16)

This is reflected in the background contribution to ∆γ of
Eq. (15).

The C2p in Eq. (15) refers to the background contribu-
tion, and the most relevant quantity is δC2p. The ZDC
(Zero Degree Calorimeter) [40] measurement of N∆γ/v2
is close to the background C2p because the possible CME
signal is small and ZDC has a large η-gap with TPC
(Sec. 3.3). However, the difference in CME signal contri-
butions in δC2p between the isobar systems may not be
negligible compared to that in the background contribu-
tions, which is what we need for the baseline estimation.
Therefore, we cannot simply take the difference between
the ZDC measurements in Ru+Ru and Zr+Zr collisions.
Even without this complication, due to the low resolution
of the ZDC event plane, the statistical uncertainties of
the ZDC C2p measurements are too large for the preci-
sion needed to achieve the background baseline estimate.
Therefore, we go to the C2p/N term itself as defined in
Eq. (13). The C2p,os represents average angular corre-
lations per 2p cluster (determined by decay kinematics
in the case of a resonance decay), and is therefore in-
sensitive to the collision species. The v2’s should well
scale between various particle/cluster types. The γos/v2
is relatively insignificant compared to C2p,os. It is there-
fore reasonably safe to assume that the quantity in the
parentheses of Eq. (13), i.e.,

(
C2p,os

v2,2p
v2

− γss
v2

)
, is the

same for Ru+Ru and Zr+Zr. Thus, we have
δ(C2p/N)

C2p/N
≈ δr

r
. (17)

In this analysis, we only use pions to calculate r, be-
cause the main source of this background is the ρ me-
son decay and the baryon stopping effect does not af-
fect the produced pions. To identify a track as a pion,
the TPC reconstructed track is required to match with a
TOF (Time Of Flight detector) [39] hit, and additional
selections are the TPC energy loss deviation nσπ < 3,
TOF mass m2 < 0.1 GeV2/c4, and transverse momen-
tum 0.2 < pT < 1.8 GeV/c. To study the invariant pair
mass (minv) dependence, r is calculated as a function of
minv (Fig. 1) for Ru+Ru and Zr+Zr separately, and then
the isobar ratio is taken between the two. A constant fit
is used to extract the average of the ratio. By applying
the same procedure to each centrality bin, we can get
their centrality dependence as shown in Fig. 2.

The quantity in the parentheses of Eq. (13), assumed
to be equal between the two isobar systems, may have a
minv dependence. Ybkgd therefore can be described by the
average δr/r weighted by a minv-dependent function. We
estimate the systematic uncertainty by the variation in r
obtained by changing the fit range to minv < 1 GeV/c2.

The isobar ratio of 1/N is also plotted in Fig. 2, which
is different from the isobar ratio of r as mentioned in
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FIG. 1. The relative excess of os over ss pion pair multiplicity, r = (Nos −Nss)/Nos, as a function of the pair invariant mass
(minv) for the 30-40% centrality in Ru+Ru and Zr+Zr collisions (upper panels). The lower panels show the ratio of r in Ru+Ru
to that in Zr+Zr collisions. Full-event results are shown on the left, corresponding to the Group-3 analysis cuts. Subevent
results are shown on the right, corresponding to the Group-2 analysis cuts. Only statistical uncertainties are shown. The pion
pair is required to have an η gap ∆ηαβ > 0.05. For subevent method, the pion pair needs to come from the same subevent.

0 20 40 60 80
centrality (%)

0.95

1

R
u+

R
u 

/ Z
r+

Z
r

1/N
r

STAR
 = 200 GeVNNsIsobar, 

c<2 GeV/
T

|<1, 0.2<pηFE, |

(a)

0 20 40 60 80
centrality (%)

0.95

1

R
u+

R
u 

/ Z
r+

Z
r

1/N
r

STAR
 = 200 GeVNNsIsobar, 

c<2 GeV/
T

|<1, 0.2<pηSE, 0.1<|

(b)

FIG. 2. The Ru+Ru to Zr+Zr ratio of r = (Nos − Nss)/Nos and that of the efficiency-corrected inverse multiplicity 1/N as
functions of centrality for full-event (left panel, with Group-3 cuts) and subevent (right panel, with Group-2 cuts) methods.
Vertical bars are statistical uncertainties; hollow boxes on r data points are systematic uncertainties.

Sec. 1 and observed in Ref. [25]. This difference arises
from the fact that the background source multiplicity
(such as the ρ mesons) does not scale identically with
multiplicity for Ru+Ru and Zr+Zr collisions. As a re-
sult, the background does not strictly scale as the in-
verse multiplicity, and thus Ybkgd deviates from unity.
The amount of deviation is the difference between the
two curves in each panel of Fig. 2.

3.2. Nonflow contamination in v∗2 measurements

The two-particle correlation is usually used to calculate
the elliptic flow in the TPC. However, this method can-
not avoid nonflow backgrounds that also correlate with
those two particles. To separate the true flow from this
inclusive measurement, a data-driven approach is used
in this analysis. We fit the 2D two-particle (∆η,∆ϕ)
distribution, where ∆η is the pseudorapidity difference
between the two particles, and ∆ϕ azimuth difference.
Since the global anisotropy, flow, is supposed to be
charge-independent, the os and ss pairs should have the
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FIG. 3. The left plots show the (∆η,∆ϕ) 2D distributions (colored) for ss pairs after acceptance and kink corrections with fit
result (black mesh). The middle and right plots are the projections of data (black markers) and fit results (red for total fit
function, blue for flow component) to ∆η, ∆ϕ directions respectively. The upper row is for Ru+Ru and lower row for Zr+Zr.
Only the full-event method and ss pairs are shown here. The fitted flow is assumed to be the same between os and ss pairs,
and the same between full-event and subevent methods. The centrality range 30–40% is used here, and other centrality ranges
are similar.
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FIG. 4. The v∗2
2 components as functions of centrality for Ru+Ru (left panel) and Zr+Zr (right panel). The blue curves are

the fitted v22 . The black and red solid markers are the inclusive v∗2
2 for ss pairs from data and fit function respectively, and

they agree with each other. The black and orange open squares are the inclusive v∗2
2 for all pairs from this measurement and

Ref. [25] Group-3, and they also agree with each other. Vertical bars and hollow boxes show the statistical and systematic
uncertainties, respectively.

same true flow. We only focus on the ss pairs to avoid
the charge-dependent backgrounds that are stronger than
charge-independent ones. We assume the true flow is η-
independent at |η| < 1, so we only consider the full event
method in this section, and use the same fitted flow value
to treat the subevent method. To avoid confusion, we will
use “fitted flow” or “fitted v2” to refer to our estimate,
which should closely reflect the underlying true flow.

In the range, |η| < 1, the single particle η distribu-
tion is roughly uniform. Therefore, the ∆η projection of

the 2D distribution is mainly a triangle due to the finite
η range. This acceptance effect also happens in mixed
events. Each pair has one particle from the current event
and the other from another similar event (in the same
centrality bin, same Vz bin of width 1 cm). However,
all other correlations do not exist in those mixed events.
Thus, we use the 2D distribution from mixed events, with
its peak at ∆η = 0 scaled to one, to correct the accep-
tance effect in real events by taking the ratio of the real
over mixed. We assume that the fitted flow does not have
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a ∆η dependence, so this operation does not affect the
fitted flow measurement.

After this acceptance correction, the ∆η distribution
generally appears flat, revealing the fine structures of
nonflow (shown in Figs. 3a, 3d). For each centrality bin,
we can get such a corrected 2D distribution, where we
see some nonphysical kinks at |∆η| = 1 ± 0.5. The cen-
trality of this STAR dataset is defined by the charged
particle multiplicity within |η| < 0.5 [25, 41]. On the
other hand, the poi in this analysis are within |η| < 1.
This distinction means that the centrality bin implicitly
imposes an additional constraint on the particle number
within |η| < 0.5 but not for 0.5 < |η| < 1. Consequently,
these differences cause those artificial kinks. To elimi-

nate this effect, we project the corrected 2D distribution
to ∆η from the away side range of 0.8π < |∆ϕ| < π,
where the fine structure of nonflow is small and can be
ignored. We then subtract its integral from this projec-
tion to remove the pedestal, effectively making it a 2D
distribution, independent of ∆ϕ. By taking the differ-
ence between the acceptance-corrected 2D distribution
and this projection, we can eliminate the kinks and any
ϕ-independent detector effects. It is important to note
that this operation does not affect the true flow, as the
fitted flow is assumed to be independent of ∆η.

With all those operations above, the 2D fit can be con-
ducted, and the fit function from observation and tuning
is

f(∆η,∆ϕ) =A1G

(
|∆η| − µ

σ1

)
G

(
∆ϕ

ρ1

)
+A2G

(
∆η

σ2

)
G

(
∆ϕ

ρ2

)
+

[
A3G

(
∆η

σ3

)
+A4G

(
∆η

σ4

)]
G

(
∆ϕ

ρ3

)
+ C

[
1 + 2V1 cos(∆ϕ) + 2V2 cos(2∆ϕ) + 2V3 cos(3∆ϕ)

]
,

(18)

where G(x) = e−x2/2 is the Gaussian function. The sec-
ond line represents the flow pedestal, and the parameter
Vn corresponds to the squared fitted vn (n = 1, 2, 3). Fig-
ure 3 shows the 2D fit results (left) along with their ∆η
(middle), ∆ϕ (right) projections in the centrality bin 30-
40% for Ru+Ru (upper) and Zr+Zr (lower) separately.

Figure 4 shows the v∗22 components as functions of cen-
trality for Ru+Ru and Zr+Zr separately. As listed in
the legend, this study closely reproduced the previous
STAR measurement for v∗22 (Ref. [25], Group-3) using
all pairs (os+ss), and the difference is considered as one
of the sources of systematic uncertainty, which can be
attributed to nonidentical datasets dynamically accessed
at run time. The fitted flow is extracted from the ss pair
correlations. Thus, the plot also includes the v∗22 mea-
sured only from ss pairs, together with the v∗22 calculated
from the total fit function, both of which are found to
be consistent with each other. Since multiple corrections
are applied before conducting the fits, the fit results have
been folded back to be comparable to the data. As also
shown in the projection plots in Fig. 3, the fitted flow is
one component of the total fit function, and all the rest
are regarded as nonflow components in this study.

The nonflow fraction ϵnf can therefore be calculated
by Eq. (7) from the fitted flow v22 and the inclusive v∗22
measurements from the STAR isobar blind analysis [25].
Figure 5 presents the ϵnf for the two isobars and the
isobar difference −δϵnf

1+ϵnf
for both full event and subevent

cases. The boxes represent the systematic uncertainties.
Since the STAR data in Ref. [25] already include the

systematics from selection variations, this study does
not duplicate them in the baseline estimation to avoid
double counting. Instead, it focuses on considering the
systematic uncertainties arising from sources specific to
the background baseline estimation of this work. These

sources include fit uncertainties and model dependencies.
The full-event inclusive v∗22 can be calculated from the
2D distribution (os+ss) in this study, represented by the
open black curves in Fig. 4. These results are essentially
a replication of the measurement conducted by Group-3
in the STAR isobar blind analysis [25], shown as open or-
ange curves in Fig. 4. In addition, a 3% flow decorrelation
over one unit of pseudorapidity has been observed [42].
As a result, ±3% variation of v22 is also considered as a
systematic uncertainty. Additionally, another method is
attempted to correct the kink effect. In this approach,
the particle η values are randomized, and a more complex
2D function is used for the fit. Through this method, a
fitted flow is obtained, and it is considered as a system-
atic variation as well.

It is of interest to examine the relative strength of
the fitted flows of the two isobar systems. Figure 6 dis-
plays the isobar ratio of the fitted v2 parameters, where
the systematic uncertainties are represented as boxes.
The fitted v2 values averaged over the 20-50% central-
ity range are 0.0561 ± 0.0010 and 0.0548 ± 0.0010 for
Ru+Ru and Zr+Zr collisions, respectively, where the
quoted uncertainties are dominated by systematic uncer-
tainties. The average ratio within the 20-50% centrality
range is 1.0215 ± 0.0004(stat.) ± 0.0009(syst.). The dif-
ference in v2 between the isobar systems originates from
variations in the initial collision geometries. These dif-
ferences can be attributed to distinct nuclear structures,
as predicted by energy density functional theory calcula-
tions [26, 28, 43]. The significant difference in the most
central collisions arises predominantly from nuclear de-
formations. For comparison, the isobar ratio of the in-
clusive v∗2 from STAR data [25] are also plotted in Fig. 6.
The measured v∗2 ratios are significantly smaller than
those of the fitted, presumably true v2. This is because
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FIG. 5. The relative nonflow strength, ϵnf = v22,nf/v
2
2 , in isobar collisions as functions of centrality for full-event data (upper left

panel, with Group-3 cuts) and subevent data (upper right panel, with Group-2 cuts). The lower panels depict the corresponding
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nonflow contamination in Ru+Ru is smaller than that
in Zr+Zr due to the higher charged particle multiplicity
dilution. This is shown in Fig. 6 by the triangles where
most data points are below unity. Factoring out the mul-
tiplicity dilutions, Fig. 6(b) shows the ratio of

√
Nv2,nf ,

which reflects the genuine difference in nonflow correla-
tions between the isobar systems. The ratio is in fact
larger than unity for most centralities, which is consis-
tent with the presumably larger energy density achieved
in Ru+Ru than Zr+Zr collisions.

Azimuthal anisotropies in central heavy-ion collisions
are particularly sensitive to nuclear deformations. It is
noteworthy that the difference between the measured v∗2
ratio and the fitted one is significant also in the most
central collisions, as shown in Fig. 6(a). This suggests
that using comparisons of the measured v∗2 ratio to hy-
drodynamic or model calculations, which often fail to
describe nonflow contributions, to infer nuclear deforma-
tions should be done with caution [44, 45]. It is inter-
esting to observe that there is no significant difference
between full-event and subevent v∗2 results in the most
central collisions. This similarity arises because the rel-
ative nonflow contribution to v∗2 is similar between full-
event and subevent for those central collisions, as shown
in Fig. 5.

3.3. Three-particle correlation background

The three-particle (3p) background correlation is the
last piece needed to form the background baseline esti-
mate, but it is challenging to measure due to the signifi-
cant combinatorial background. We resort to the hijing
(Heavy Ion Jet INteraction Generator) model [46, 47],
which simulates parton-parton hard scatterings based on
perturbative QCD and gives a reasonable description of
partonic energy loss in the QGP medium (jet quenching).
Since hijing does not have collective flow, the correlator
C3 ≡ C3,os −C3,ss in hijing is entirely composed of gen-
uine 3-particle correlations, C3,os =

N3p,os
Nos

C3p,os, C3,ss =
N3p,ss
Nss

C3p,ss (c.f. Eq. (10)). The pathlength-dependent
jet quenching does produce some degree of anisotropy in
the final-state particle azimuthal distribution, sensitive
to the initial geometry and indistinguishable from collec-
tive anisotropy. This anisotropy, however, is negligible
compared to the effect of the 3p correlations [48]. The 3p
correlation strength, C3p, can be readily obtained from
the 3p correlator in hijing,

C3p = N2C3 . (19)

We use hijing version v1.411 and simulate 7.0 bil-
lion events each for Ru+Ru and Zr+Zr collisions at√
sNN = 200 GeV. The nuclear structure density distribu-

tions are given by energy density functional theory cal-
culations [26–28], and they are implemented in the initial
geometry setup in hijing. Only the final-state charged
pions, kaons, protons and their antiparticles are used for

centrality definition and poi. The centrality is defined by
the multiplicity distribution of particles with |η| < 0.5.
The same analysis cuts as the STAR isobar data anal-
ysis [25] (see Table I) are used to process hijing simu-
lation data. Figure 7 shows the C3p in isobar collisions
as functions of centrality, as obtained from hijing sim-
ulations, and the Ru+Ru over Zr+Zr ratios of C3p. The
centrality dependence is weak, as one would expect for
C3p, which is defined for the correlated triplets with the
dilution effect factored out as in Eq. (14). The C3p is
larger in full-event than subevent because the number of
triplets drops with acceptance more rapidly than single
multiplicity.

An important question is how well hijing describes
data in terms of 3p correlations? The question cannot be
directly answered because of the difficulties to access the
3p correlations in real data as aforementioned. However,
there are a few checks one can make. We first examine
how well hijing describes the C3 in peripheral collisions,
where the nonflow effects dominate due to smaller mul-
tiplicity dilution. We show the measured C3 in data and
in hijing in Fig. 8 for full-event and subevent analysis.
As shown in Fig. 8, the 70-80% peripheral data are rea-
sonably well described by hijing. This suggests that the
peripheral C3 data are dominated by 3p correlations, the
flow-induced background is small in peripheral collisions.
hijing is a reasonable model for (mini-)jet production
as well as soft physics via string fragmentation, so it is
considered as suitable description for 3p correlations.

The default setup of our hijing simulations include jet
quenching. We also simulate hijing with jet quenching
turned off. The quenching-off C3p is about 20% higher
than the quenching-on result, as shown in Fig. 8. We take
this difference as the maximum systematic uncertainty
on 3p correlation estimate. As another check, we also
show in Fig. 8 the hijing C3 without cutting on ∆ηαβ
(as in the Group-4 data analysis [25]). The difference is
small, and we conclude that hijing with quenching-on
and -off provide a safe estimate of the one-side maximum
systematic uncertainty. We thus assign their difference
divided by

√
3, assuming a uniform probability for the

systematic uncertainty, to be the one standard deviation
systematic uncertainty on our 3p correlation background
estimate, and expand it to be symmetric.

In order to estimate the baseline contribution from 3p
correlations, we also need the quantity C2p (Eq. (15)). As
shown in Eq. (13), C2p represents the 2p nonflow back-
ground correlations in C3 measurements. If the azimuth
of rp is known, then Eq. (5) gives the true elliptic flow
and Eq. (2) gives ∆γ without 3p nonflow by definition.
If so, Eq. (12) simply becomes

N
∆γbkgd{rp}
v2{rp} = C2p . (20)

In STAR, the ZDC is separated from TPC by a large η
gap and at high collision energies measures only spec-
tator neutrons. Thus, the ZDC measurements of the
event plane are not correlated with poi, and the N∆γ/v2
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FIG. 7. The C3p in Ru+Ru and Zr+Zr collisions as functions of centrality for full-event (left panel, with Group-3 cuts) and
subevent (right panel, with Group-2 cuts) analysis, obtained from hijing simulations of 7.0 billion minimum-bias events for
each system. The lower panels show the Ru+Ru over Zr+Zr ratio of C3p. Vertical bars indicate statistical uncertainties. The
hollow boxes show systematic uncertainties, estimated from hijing quenching-off simulations. The two poi’s have an η gap,
∆ηαβ > 0.05. For the subevent method, the two poi’s come from the same subevent, while the reference particle comes from
the other event.
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with Group-2 cuts) analyses, obtained from the ZDC measurements of ∆γ/v2 multiplied by the efficiency-corrected multiplicity.
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FIG. 10. The ratio C3p/C2p as functions of centrality for full-event (left panel, with Group-3 cuts) and subevent methods (right
panel, with Group-2 cuts). Some of the central and peripheral data points are off the plots with large error bars. Vertical bars
and hollow boxes show the statistical and systematic uncertainties, respectively.

w.r.t. ZDC can be used to estimate C2p. Figure 9(a)
shows the full-event ZDC measurement from the STAR
isobar blind analysis (Group-3) [25]. Figure 9(b) shows
the subevent ZDC measurement from this analysis be-
cause the subevent ZDC measurement in the STAR blind
analysis [25] used 0.05 < |η| < 1 instead of 0.1 < |η| < 1.

The poi multiplicities have been corrected for the
centrality- and pT -dependent track reconstruction effi-
ciencies of the STAR TPC. The average efficiency is on
the order of 85%. The efficiency is obtained from Monte
Carlo tracks simulated by geant in the STAR detector
and embedded into the isobar data on the pixel level with
proper detector response simulations. In this embedding
sample, the input tracks and reconstructed tracks are
distributed as functions of centrality, particle species,
charge, and pT , η, which are slightly different between
the two isobars. For each centrality bin, we obtain the
integral (total number of pp̄, K±, π±) inside our cuts
(poi) for the reconstructed and input tracks, and their ra-

tio gives us the efficiency. Due to the η gap, the subevent
has slightly different efficiency compared to the full event.

The systematic uncertainties shown in Fig. 9 include
those on the ZDC measurements from the blind anal-
ysis [25] for both full-event and subevent analyses. The
ZDC measurements could contain some CME signal, pos-
sibly on the order of a few percent [16, 49]. Because C2p

refers to 2p background correlation, we additionally as-
sign a one-sided systematic uncertainty of −5% on C2p.
Only this one-sided systematic uncertainty is included in
the estimate of those on Ybkgd. The systematic uncer-
tainties from data are not included on Ybkgd but only on
Y , to avoid double counting.

Figure 10 shows the ratios of C3p/C2p as a function of
centrality in both full-event and subevent analyses. The
ratios are on the order of a few percent. The ratio in the
full event is larger than in the subevent due to a simple
acceptance effect–the smaller the acceptance, the smaller
the high-order correlations.
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With all the ingredients ready, as in Figs. 2, 9, 6, and
7, one can easily calculate the background contribution
from 3p correlations. The results are shown in Fig. 11.
The prefactor is depicted in the left column, the sum of
the various isobar differences is depicted in the middle
column, and the final 3p background difference is de-
picted in the right column.

4. RESULT

The previous section discusses all the ingredients
needed for background estimation. Besides the unity,
there are three terms in Eq. (15). These terms are pre-
sented in Fig. 2, Fig. 5, and Fig. 11, separately. The sum
of all those terms by Eq. (15) is the background baseline
estimate. It is shown in Fig. 12 as a function of central-
ity, together with the STAR data from Group-3 full-event
and Group-2 subevent measurements. We also apply the
same procedure for the other two measurements in the
STAR isobar blind analysis [25], namely Group-2 full-
event and Group-4 subevent measurements.

We compute an average background baseline over the
centrality range of 20-50%. Each of the three background
terms in Eq. 15 is averaged first, weighted by the corre-
sponding inverse squared statistical uncertainty. Then,
the three terms are added to yield the average Ybkgd base-
line. The average Ybkgd baselines are tabulated in Table I
for the four measurements and plotted on the summary
plot in Fig. 13.

The difference between the STAR data from Ref. [25]
and the baseline from this study, Ysignal = Y − Ybkgd,
reflects the relative isobar difference of the possible CME
signals in the inclusive ∆γ measurements. Simple algebra
indicates

Ysignal =Ybkgd
δfcme

1− fRu
cme

(21)

where fcme ≡ ∆γcme/∆γ = 1−∆γbkgd/∆γ is the fraction
of CME signal in the ∆γ measurement, and δfcme ≡
fRu

cme − fZrcme is its difference between Ru+Ru and Zr+Zr
collisions. Assuming the CME signal is proportional to
the squared magnetic field, ∆γcme ∝ B2, then after a few
steps of algebra we obtain

fRu
cme =

Ysignal
Y

/[
1− Ybkgd

/
(B2/v∗2)

Ru

(B2/v∗2)
Zr

]
≈
Ysignal
Y

/[
1− Ybkgd

(
1 +

δv∗2
v∗2

− δB2

B2

)] (22)

where δB2/B2 ≡ (B2
Ru−B2

Zr)/B
2
Zr is the relative squared

magnetic field difference between the isobar collisions. It
reduces to the simple relationship fRu

cme = Ysignal

/
δB2

B2 if
neglecting small quantities.

Our results for Ysignal and fcme are consistent with zero.
Assuming δB2/B2 = 15% [50, 51] and that fcme has a
Gaussian probability distribution with a lower bound at

the origin [52] (fcme ≥ 0), we extract an upper limit on
fRu

cme of roughly 10% for all four measurements at 95%
confidence level. (The upper limit on fZrcme is accordingly
smaller.) The upper limits are listed in Table I and illus-
trated in Fig. 14(a). Figure 14(b) shows the fRu

cme upper
limits extracted for a range of values of δB2/B2.

We note that in Fig. 12 the difference between data
and baseline in the 50-80% centrality range is 0.0305 ±
0.0100±0.0041 (2.8σ) for full events and 0.0355±0.0215±
0.0046 (1.6σ) for subevents. In the blind analysis [25] and
in this work, we have concentrated on the mid-central 20-
50% centrality range where the CME is predicted to be
more probable than peripheral or central collisions [3, 4,
6]. We speculate that the peripheral collision results are
likely due to fluctuations.

5. SUMMARY

In this study, we have estimated nonflow contributions
in v2 by fitting two-particle (∆η,∆ϕ) distributions and
analyzing the deviations from simple multiplicity scaling
of the three-particle correlator using the STAR isobar
data. The 3-particle nonflow correlation contributions to
C3 are evaluated using hijing simulations. With these
inputs, we have obtained an improved background esti-
mate of the Ru+Ru to Zr+Zr ratio of the ∆γ/v2 variable.
The estimated background baselines are found to be con-
sistent with the STAR measurements for both the full-
event and subevent methods. We have also extracted an
upper limit of the CME fraction of approximately 10%
with a 95% confidence level in isobar collisions at 200
GeV.
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TABLE I. Isobar measurements in the 20-50% centrality range from the STAR blind analysis [25] and the corresponding
background baseline estimates from this work, for the four measurements using cumulant analysis techniques (two-particle
cumulant for v∗2 and three-particle cumulant for ∆γ). Kinematic cuts [25] are |η| < 1 for full event (FE) and 0.1 < |η| < 1
for subevent (SE), both with 0.2 < pT < 2 GeV/c. The first block lists the important analysis cuts [25], slightly differing
among the four measurements, along with the isobar ratios of the ⟨∆γ/v2⟩ measurements [25] (denoted as Y ). The second
block tabulates the ingredients used for the background baseline estimates, either from data or hijing simulations with the
corresponding analysis cuts, along with final background baseline (Ybkgd) as well as the magnitudes of its three components in
Eq. (15). The last block lists the background subtracted signal (Ysignal) and the CME upper limit at the 95% confidence level
assuming the CME signal difference between Ru+Ru and Zr+Zr is 15%. The first quoted uncertainty is statistical and the
second systematic.

Group-2 FE Group-3 FE Group-2 SE Group-4 SE
∆γ cuts |∆ηαβ | > 0.05 |∆ηαβ | > 0.05 –
v∗2 cuts |∆ηc| > 0.05 & Gaus. fit – – Same-sign only
Y ≡

⟨
(∆γ/v∗

2 )Ru

(∆γ/v∗
2 )Zr

⟩
0.9658± 0.0050± 0.0007 0.9733± 0.0040± 0.0010 0.9611± 0.0070± 0.0016 0.9629± 0.0050± 0.0003

⟨ϵnf⟩ 0.2528± 0.0027± 0.0489 0.3419± 0.0008± 0.0555 0.1812± 0.0007± 0.0464 0.1948± 0.0007± 0.0465

⟨C2p⟩ (ZDC) 0.8302± 0.0511± 0.0415 0.5236± 0.0375± 0.0262 0.6097± 0.0540± 0.0305

⟨C3p⟩ (hijing) 0.0707± 0.0005± 0.0084 0.0133± 0.0002± 0.0013 0.0135± 0.0002± 0.0013

⟨δC3p/C3p⟩ (hijing) −0.0054± 0.0102± 0.0049 −0.0035± 0.0262± 0.0065 −0.0180± 0.0241± 0.0073

⟨δr/r⟩ −0.0329± 0.0003± 0.0007 −0.0308± 0.0004± 0.0006 −0.0323± 0.0003± 0.0006

⟨−δϵnf/(1 + ϵnf)⟩ 0.0097± 0.0028± 0.0000 0.0162± 0.0008± 0.0013 0.0080± 0.0008± 0.0007 0.0075± 0.0008± 0.0008

the third term −0.0144± 0.0017± 0.0011 −0.0108± 0.0028± 0.0008 −0.0125± 0.0025± 0.0016

Ybkgd 0.9625± 0.0033± 0.0013 0.9689± 0.0019± 0.0016 0.9664± 0.0029± 0.0011 0.9628± 0.0027± 0.0018

Ysignal 0.0033± 0.0060± 0.0014 0.0044± 0.0043± 0.0019 −0.0052± 0.0075± 0.0020 0.0001± 0.0061± 0.0018

fRu
cme upper limit 11.5% 10.3% 8.3% 9.8%

 0.94

 0.96

 0.98

 1

 1.02
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