Update: Generalized angularities and differential jet shapes measurements from STAR at $\sqrt{s}=200~{\rm GeV}$

Tanmay Pani

Rutgers University

August 18, 2023

1/45

< □ > < 同 > < 回 > < 回 >

Generalized angularities

$$r(\text{const}, \text{jet}) = \sqrt{(\eta_{\text{jet}} - \eta_{\text{const}})^2 + (\phi_{\text{jet}} - \phi_{\text{const}})^2}$$

• Jet girth/broadening:

$$\mathbf{g} = \lambda_1^1 = \sum_{\text{const} \in \text{jet}} \left(\frac{p_{\text{T,const}} r(\text{const,jet})}{p_{\text{T,jet}}} \right)$$

• Momentum dispersion :

$$\begin{split} \mathbf{p}_{\mathrm{T}}^{\mathrm{D}} &= \sqrt{\lambda_{0}^{2}} = \frac{\sqrt{\sum_{\mathrm{const} \in \mathrm{jet}} p_{\mathrm{T,const}}^{2}}}{p_{\mathrm{T,jet}}} \,\, \mathrm{soft/hard} \\ \mathrm{fragmentation} \,\, \Longrightarrow \,\, \mathrm{low/high} \,\, p_{T}^{D} \\ \bullet \,\, \mathrm{LeSub} &= p_{\mathrm{T,const}}^{\mathrm{Leading}} - p_{\mathrm{T,const}}^{\mathrm{Subleading}} \,\, \mathrm{, \ proxy \ for \ hardest} \\ \mathrm{splitting \ in \ jet} \end{split}$$

< □ > < □ > < □ > < □ > < □ >

Observables

STAR

• Differential jet shapes : Differential look into jet-broadening

$$\rho(r) = \lim_{\delta r \to 0} \left\langle \frac{1}{\delta r} \frac{\sum_{|\mathbf{r}_{\text{const}} - \mathbf{r}| < \delta r/2} p_{\text{T,const}}}{p_{\text{T,jet}}} \right\rangle_{\text{jets}}$$

where,

 $\mathbf{r}_{\mathrm{const}} = (\eta_{\mathrm{const}} - \eta_{\mathrm{jet}})\hat{\eta} + (\phi_{\mathrm{const}} - \phi_{\mathrm{jet}})\hat{\phi}$

•
$$\lambda_{\beta}^{1} = \int_{0}^{R} r^{\beta} \rho(r) dr$$
, R = Resolution parameter of the jet

э

< □ > < □ > < □ > < □ > < □ >

Dataset and Simulations

- System: Au+Au @ $\sqrt{s} = 200 \text{GeV}$
- Production: Mid-luminosity, 2014
- High Tower (VPDMB30*BHT2) triggered events (\exists tower with $E_{tower} > 5.4$ GeV) to enhance jet signal
- $|Z_{\rm vertex, event}| < 30 \ {\rm cm}$
- \bullet A partial set of ${\approx}10$ million mid-lumi events used for this update
- Embedding simulation available:
 - GEN: PYTHIA-6 Perugia¹ dijet events
 - RECO: PYTHIA-6 Perugia + GEANT3 + STAR Au+Au Run14 Minbias

¹Phys. Rev. D 82, 074018

< ロ > < 同 > < 回 > < 回 >

- Jets reconstructed by clustering **TPC tracks** and **calorimeter energy depositions** using the **anti**- k_T **algorithm** with a **resolution parameter** R = 0.4 and using the FASTJET library ²
- Hard-core constituent cut of 2 GeV was applied on tracks and tower depositions for jet reconstruction i.e., $p_{T,trk}(E_{T,tower}/c) \ge 2 \text{ GeV/c}$
- For $\rho(r)$ calculation, used tracks with $r(\text{trk}, \text{jet}) = \sqrt{(\eta_{\text{jet}} \eta_{\text{trk}})^2 + (\phi_{\text{jet}} \phi_{\text{trk}})^2} < 0.4$ and $p_{\text{T,trk}} > 1 \text{ GeV/c}$

< ロ > < 同 > < 回 > < 回 >

²M. Cacciari, G. Salam, G. Soyez, JHEP 04 (2008) 06

Raw $p_{T,jet}$

Recap

▶ < 클 ▶ < 클 ▶ 클 ∽ Q (~ August 18, 2023 6/45

• • • • • • • •

Raw $\rho(r)$

Recap

イロト イヨト イヨト

Matching efficiency

Match made between closest possible GEN-RECO pair, with the distance between them being $< 0.4\,$

Figure: RECO Jet Matching Efficiency

Figure: GEN Jet Matching Efficiency

Multifolding

- Iterative unfolding technique that derives reweighing factors using neural networks
- No need to bin data
- Can simultaneously unfold all variables

Parameters:

- Number of iterations 10 (the unfolding push-pull iterations)
- Model layer sizes: 100, 100, 100 (3 hidden layers)
- Epochs: 100 (number of times the network sees the training data)
- **Patience:** 20 (number of epochs with no improvement after which training will be stopped)
- Batch size: 1000 (number of samples per gradient update)

< ロ > < 同 > < 回 > < 回 >

Closure from Multifold

Closure from Multifold

Tanmay Pani

August 18, 2023

Closure from Multifold

Tanmay Pani

August 18, 2023

Closure from Multifold

Tanmay Pani

HP2023

August 18, 2023

Closure from Multifold

Tanmay Pani

HP2023

August 18, 2023

Closure from Multifold

Tanmay Pani

August 18, 2023

Closure from Multifold

Tanmay Pani

August 18, 2023

Conclusions and Outlook

- Closure for simultaneously unfolding p_T^D , LeSub, Girth and $p_{T,jet}$ is established
- **Ongoing** (to be presented on Thursday):
 - Background subtraction from $\rho(r)$ measurements using mixed-events
 - Unfolding p_T^D , LeSub, Girth and $p_{T,jet}$ data using Multifold
 - Multifold closure for $\rho(r)$ and data unfolding.

イロト イボト イヨト イヨト

BACK UP...

2

・ロト ・四ト ・ヨト ・ヨト

Iterative Bayesian Unfolding Closure (0 to 10 %)

Iterative Bayesian Unfolding Closure

Tanmay Pani

23 / 45

August 18, 2023

STAR

Iterative Bayesian Unfolding Closure

24 / 45

Iterative Bayesian Unfolding Closure

Iterative Bayesian Unfolding Closure

August 18, 2023

26/45

STAR

Tanmay Pani

Iterative Bayesian Unfolding Closure

Recap: LeSub (Presented in HP2023)

LeSub overall shows slight preference toward PYTHIA-6, PYTHIA-8 underestimates LeSub on average

Recap: p_T^D (Presented in HP2023)

 p_T^D shows subtle preference toward PYTHIA-6, PYTHIA-8 underestimates highest and lowest p_T^D 's

Tanmay Pani

August 18, 2023 32 / 45

Recap: Girth (Presented in HP2023)

 Girth agrees well with PYTHIA-6, PYTHIA-8 Detroit tune systemically overestimates higher girths

Recap: Differential Jet Shapes $(\rho(r))$ (Presented in HP2023)

PYHTIA-6 describes data well, PYTHIA-8 overestimates broader jets

Tanmay Pani

 $(p_{T}^{D})^{2}$

August 18, 2023

< □ > < □ > < □ > < □ > < □ >

35 / 45

2

Checking sanity of jet clustering

R = 0.4 Charged hard-core jets, AuAu 200GeV mid-luminosity 2014 production Centrality: 0 - 20% Triggers: MB-mon, VPDMB5, VPDMB30, BHT1*VPDMB30, BHT2*VPDMB30, BTHT3

Tanmay Pani

August 18, 2023 36 / 45

Quark jets vs Gluon Jets from PYTHIA-8

- Quark jets (QJs) from $qq \rightarrow qq$ processes, Gluon jets (GJs) from $gg \rightarrow gg$ processes in PYTHIA-8 HardQCD mode
- $\langle p_T^D \rangle_{QJs} > \langle p_T^D \rangle_{GJs}, \\ \langle LeSub \rangle_{QJs} > \langle LeSub \rangle_{GJs}, \\ \langle g \rangle_{QJs} < \langle g \rangle_{GJs} \text{ (next-slide)}$
- GJs are broader, softer than QJs
- QJs closer to data than GJs and nominal PYTHIA-8 Detroit tune for all measured observables

< ロ > < 同 > < 回 > < 回 >

- PYTHIA-8 overestimates gluon-like fragmentations and underestimates hard fragmentation of quarks
- Need comparisions for more substructures
- PYTHIA-8 Detroit tune needs more tuning to better explain ungroomed jet substructure

< ロ > < 同 > < 回 > < 回 >

August 18, 2023

Jets as probes for QGP

- Jets = collimated sprays of particles from hard scatterings of partons
 - Formed at early stages of heavy ion collisions
 - Travel through Quark Gluon Plasma (QGP), and modified relative to vaccum

イロト イヨト イヨト

Jets as probes to study $QGP \equiv$ Modification of observables related to energy distribution inside jets (relative to vaccum)

$p_{\mathrm{T,jet}}$ PYTHIA-6 vs PYTHIA-8

 $p_{\mathrm{T,jet}}$ varies 5-20% between the two generations

	—	
Lanmay	Pa	ini –

< □ > < □ > < □ > < Ξ</p>

Quark vs Gluon, lower momentum jets:

Tanmay Pani

10

10

1/N_{jets}dN_{jets}/dg

Systematics - p_T^D , LeSub, Girth

To ensure robustness of measurements, varied few details of the analysis within tolerance and added any small variations that arise as systematic uncertainties

- Tracking efficiency: Tracking efficiency correction applied on tracks before unfolding Δ(p_T^D) < 0.5%, Δ(LeSub) < 0.3%, Δ(g) < 2%
- **IBU regularization:** Variations with $N_{iterations} = 3$ and $N_{iterations} = 6$ $\Delta(p_T^D) \le 4\%$, $\Delta(\text{LeSub}) < 1\%$, $\Delta(g) \le 1\%$
- **IBU prior variation:** Rescaled the nominal prior (PYTHIA6 Perugia) to PYTHIA8 Detroit and the unfolded data $5 < \Delta(p_T^D) < 14\%$, $1 < \Delta(\text{LeSub}) \le 6\%$, $1 < \Delta(\text{g}) \le 10\%$
- Jet energy scale: $p_{T,jet}$ windows shifted 1 GeV/c to the left and right, subtracted the deviation in MC samples from the variation $\Delta(p_T^D) \leq 1\%$, $\Delta(\text{LeSub}) \approx 0\%$, $\Delta(g) \leq 0.5\%$

э

イロト イボト イヨト イヨト

Differential jet shapes $(\rho(r))$

• Thus,

$$\rho(r) = \frac{1}{N_{\rm jets}} \sum_{\rm jets} \frac{1}{\delta r} \frac{\sum_{|\mathbf{r}_{\rm trk} - \mathbf{r}| < \delta r/2} p_{\rm T, trk}}{p_{\rm T, jet}}$$

- Analysis done in bins of 10 $< p_{\rm T,jet} \le$ 15 GeV/c, 15 $< p_{\rm T,jet} \le$ 20 GeV/c and $p_{\rm T,jet} >$ 20 GeV/c
- Embedding simulation used for deconvoluting detector effects using bin-by-bin correction factors
- 2 levels embedding simulation:
 - GEN: PYTHA-6 dijet events
 - RECO: PYTHA-6 + GEANT3 + STAR p+p Run12 Zerobias
 - Correction factors $\epsilon(r) = \frac{\rho_{\text{GEN}}(r)}{\rho_{\text{RECO}}(r)}$ applied to data after closure test
- All tracking inefficiency and acceptance corrections handled by the bin-by-bin corrections

イロト イボト イヨト イヨト

Closure

Unfolding of data here done through Bin-by-Bin corrections, first we make sure the corrections pass a closure test and then apply it to data

Top plots are from the Training set by doing $\epsilon = (\text{Training GEN})/(\text{Training RECO})$ and the bottom "closure" curves are $((\text{Test RECO})/\epsilon)/(\text{Test GEN})$

Tanmay Pani

HP2023

August 18, 2023

To ensure robustness of measurements, varied few details of the analysis within tolerance and added any small variations that arise as systematic uncertainties

- Tracking efficiency: Tracking efficiency correction applied on tracks before bin-by-bin correction $\Delta(\rho) \leq 0.3\%$
- Non closure of bin/bin corrections: Any non closure (deviations from 1 in the bottom plots of the slide before) $\Delta(\rho) \leq 2\%$
- Jet energy scale: $p_{T,jet}$ windows shifted 1 GeV/c to the left and right, subtracted the deviation in MC samples from the variation $\Delta(\rho) < 20\%$
- $p_{T,jet}$ resolutions: Shift $p_{T,jet}$ randomly using a gaussian with σ from $p_{T,jet}$ resolution ($\approx 20\%$) $\Delta(\rho) \leq 20\%$

イロト 不得 トイヨト イヨト