Preliminary Figures Request: Baryon to Meson Ratios in Jets from Au+Au and p+p colisions at 200 GeV _{Gabriel Dale-Gau}

August 29th, 2024

Contact	Information:
Contact	mormation.

PA name: Gabriel Dale-Gau PA email address: <u>gdaleg2@uic.edu</u> Supervisor email address: evdolga@uic.edu

Data Set: Run 14 Au+Au sqrt{s_{NN}} =
200 GeV, Run 15 p+p sqrt{s_{NN}} =
200 GeV
Year: 2014, 2015
Production tag: AuAu: P18ih, pp: P16id
Triggers used: MB, HT2,HT3

Event Level Cuts:

0-20% Centrality |vz| < 25 |vr| < 2.0 |vzz-vpd| < 3.0 Int t badruns[385] = { 15077003, 15077033, 15077042, 15077043, 15077044, 15077045, 15077046, 15077048, 15077049, 15077050, 15077051, 15077061, 15078001, 15078069, 15078103, 15078104, 15078107, 15078108, 15079041, 15080053, 15080054, 15082031, 15084022, 15087042, 15088003, 15088004, 15088005, 15088006, 15089009, 15089010, 15090068, 15083061, 15156043, 15089023, 15089024, 15089025, 15089026, 15090006, 15098040, 15098041, 15104039, 15104059, 15107077, 15108021, 15109005, 15110039, 15110040, 15110041, 15110042, 15110043, 15111003, 15111004, 15111005, 15111006, 15111007, 15111008, 15111009, 15111010, 15111011, 15111012, 15111013, 15111014, 15111015, 15111016, 15114010, 15114011, 15114012, 15114013, 15114027, 15114028, 15117002, 15119042, 15119043, 15121060, 15121061, 15122046, 15122047, 15122048, 15123034, 15125075, 15130036, 15132005, 15132006, 15133017, 15134053, 15135062, 15140026, 15142019, 15142020, 15142054, 15142055, 15142058, 15144036, 15146042, 15146043, 15146044, 15146045, 15146046, 15146064, 15146065, 15146066, 15146067, 15146068, 15146069, 15147022, 15147023, 15147024, 15147025, 15147026, 15147037, 15147038, 15147039, 15147040, 15150057, 15156001, 15162004, 15165008, 15165009, 15166013, 15110058, 15118063, 15119025, 15112049, 15129006, 15131049, 15133043, 15138069, 15144004, 15145021, 15146003, 15146004, 15146049, 15146050, 15146051, 15146052, 15146054, 15146055, 15146057, 15146058, 15147001, 15147002, 15147003, 15147004, 15147005, 15147006, 15147007, 15147008, 15147027, 15147028, 15147029, 15147030, 15147031, 15147032, 15147033, 15147041, 15147042, 15148003, 15148004, 15148005, 15148006, 15148007, 15148008, 15148009, 15148010, 15148011, 15149073, 15150005, 15150027, 15150030, 15150031, 15150062, 15151042, 15152004, 15161067, 15163022, 15157017, 15159054, 15161051, 15161066, 15162047, 15162053, 15163058, 15164048, 15164067, 15111001, 15111002, 15090068, 15157017, 15159054, 15161051, 15161066, 15162047, 15162053, 15163058, 15164067, 15164048, 15114058, 15115088, 15121062, 15146062, 15095020, 15095021, 15097059, 15098001, 15098002, 15098003, 15098005, 15100100, 15100101, 15100102, 15100103, 15102021, 15102024, 15104016, 15104018, 15109039, 15109040, 15110032, 15114058, 15115088, 15121062, 15120011, 15124044, 15146059, 15146060, 15146061, 15146062, 15147009, 15147010, 15147011, 15147012, 15147013, 15147014, 15147015, 15150059, 15151050, 15159035, 15161022, 15162031, 15166045, 15077003, 15077033, 15077042, 15077043, 15077044, 15077045, 15077046, 15077048, 15077049, 15077050, 15077051, 15077061, 15078001, 15078069, 15078103, 15078104, 15078107, 15078108, 15079041, 15080053, 15080054, 15082031, 15084022, 15087042, 15088003, 15088004, 15088005, 15088006, 15089009, 15089010, 15089023, 15089024, 15089025, 15089026, 15090006, 15098040, 15104039, 15104059, 15098041, 15107077, 15108021, 15109004, 15109005, 15110039, 15110040, 15110041, 15110042, 15110043, 15110058, 15111001, 15111002, 15111003, 15111004, 15111005, 15111006, 15111007, 15111008, 15111009, 15111010, 15111011, 15111012, 15111013, 15111014, 15111015, 15111016, 15114010, 15114011, 15114012, 15114013, 15114027, 15114028, 15117002, 15119042, 15119043, 15121060, 15121061, 15122046, 15122047, 15122048, 15123034, 15125075, 15130036, 15132005, 15132006, 15133017, 15134053, 15135062, 15140026, 15142019, 15142020, 15142054, 15142055, 15142058, 15144036, 15150057, 15156001, 15162004, 15165008, 15165009, 15166013, 15112049, 15114052, 15118063, 15119025, 15129006, 15131049, 15133043, 15138069, 15144004, 15145021, 15146003, 15146004, 15149073, 15150005, 15150031, 15151042, 15150062, 15152004, 15161067, 15163022, 15095020, 15095021, 15097059, 15097065, 15098001, 15098002, 15098003, 15098005, 15100100, 15100101, 15100102, 15100103, 15109039, 15120011, 15102021, 15102024, 15104016, 15104018, 15109040, 15110032, 15151050, 15159035, 15161022, 15162031, 15166045

Motivation

FIG. 4: Distributions of π^+ in p_T arising from thermalshower recombination (solid line) and shower-shower recombination, i.e. fragmentation (dash-dot line).

- Two prominent signatures of QGP: -
 - Baryon enhancement
 - Jet quenching/Jet modification
- **Shower Parton Recombination** [PR(2004)0312271]
- AMPT simulations: baryon/meson is _ modified for jets in QGP [PLB(2022)137638]
- Is jet fragmentation modified by QGP?
- How does QGP hadronize?
- We measure p/π in jets using jet-_ track correlations

Quality Cuts

Jet Cuts:

- $|\eta_{\text{Jet}}| < 1.0 R$
- Jet Radius R = 0.2, R = 0.3, R = 0.4
- Anti- $k_{\rm T}$ algorithm
- Inclusive Jets
- Jet $p_{\rm T}$ > 9 GeV/c
- MB, HT2, HT3 data
- Constituent $p_{\rm T}$ > 2.0 GeV/c

Track Cuts:

- nHits > 25
- | $\eta_{\rm track}$ | < 1.0
- ToF matching cuts: $\beta > 0$
 - $-0.5 < m^2 < 1.5$
- dE/dx matching cuts:
 - $|n\sigma_{\pi}| < 10$
- p_{T} > 2.0 GeV/c
- For jet-track correlation: | $\eta_{\rm track}$ | < 0.5

Measurement Technique

Fully reconstructed jets with tracks identified by Time of Flight (ToF) and Time Projection Chamber (TPC) information => Particle Identification in jets

Data Samples

- p+p collisions at $\sqrt{s} = 200$ GeV (2015)
- 0-10% central Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, (2014)

Jet Reconstruction

- Anti- $k_{\rm T}$
- Jet R = 0.2, 0.3, 0.4
- Constituent selections - $p_{\rm T}^{const}$ > 2.0 GeV/c
 - $p_{\rm T}^{const}$ > 3.0 GeV/c
- Jet p_{T}^{raw} > 9 GeV/c
- Inclusive Jets

Analysis Overview

- Run Anti- $k_{\rm T}$ algorithm to identify Jet Axis
- Perform correlations with entire event
- Build Mixed event for pair acceptance correction
- Divide signal correlation by mixed event
- Select regions of equal area for jet and underlying event
- Subtract UE from Jet
- Identify Pion, Proton, Kaon yields from remaining Jet Signal
- Divide proton yield by pion yield to measure ratio

Correlated Background Removal: Embed into Mixed Constituent Event

p+p event embedded in Au+Au Mixed Event

Ŧ

dφ

Procedure:

- Run Jetfinder on p+p event
- Create Mixed event by taking one track from different events until a reasonable nTrack value is reached
- Combine p+p event (with jet) and Mixed Event
- Run Jetfinder on resulting mixed event
- Perform correlations with mixed event

Pseudo-embedding → Matched Jets Combinatorials → Unmatched jets

Fake Rate Determination:

- Build Template fit using p+p and combinatorial jet spectra
- Fit to Au+Au Jet spectra
- Scale p+p and combinatorial n_{jet} values by fit parameters to determine fake rate

Systematic Uncertainty

One representative Jet R is shown here, all Systematics included in backup Systematic Sources:

- dE/dx calibration, determined by varying each input parameter for gaussian fits
- ToF cut placement for proton identification below 3.0 GeV/*c*
- Uncorrelated background subtraction, determined by varying UE definition
- R_{AA} adjustment, determined by weighting spectra template fits with published STAR jet R_{AA} , and employing the extracted fake jet rate for correlated background subtraction

Results

R = 0.2

R = 0.3

R = 0.4

Physics Message

- If the fragmentation for Jets with $p_{\rm T}$ > 9.0 GeV/*c* strongly prefers pion over proton production
- No enhancement between p+p and 0-10% central Au+Au collisions is observed
- No dependence on Jet R is observed

Backup

Au+Au Systematics

Au+Au, dE/dx Calibration Breakdown

p+p Systematics

p+p, dE/dx Calibration Breakdown

Determining Fake Rate: Spectra Template Fit

Determining Fake Rate: Spectra Template Fit

R = 0.2

Fake Rate: 15%

Fake Rate: 42%

Fake Rate: 66%

Resulting Correction: Embed into MCE + Template Fit Fake Rate

Systematics from Jet R_{AA}

- Our new template fit method of determining fake rate assumes flat R_{AA}
- As a futher systematic measure I extract the slope of published jet R_{AA}
- I weight the raw p+p spectra using this slope and re-run template fits to extract a variant fake rate
- The correction using this fake rate will be reported as systematics

Determining Fake Rate: Spectra Template Fit, Weighted by RAA

Fake Rate: 20%

Fake Rate: 46%

Fake Rate: 69%

Double Fits for $m^{2} < 0.5$

