More momentum

Less momentum

Selecting on p_T requires $p_y = \text{sqrt}(p_T^2 - (p_x - \Delta)^2)$ but directional symmetry for $p_y ==> < p_y> = 0$

True for all selections except for $p_y == 0$, but this is a very small fraction of all jets in the sample

Value measured in a large p_T bin consistent with weighted average of differential measurements

 v_1 measured is a well defined physical quantity, $\langle p_x \rangle / p_T$

If you look at only the sample with $p_y = 0$ and define a v_1 from the number asymmetry from p_T shift,

$$\mathbf{v_{1'}} = \frac{\int_{p_{T,1}}^{p_{T,2}} f(p_T) dp_T - \int_{p_{T,1+\Delta}}^{p_{T,2+\Delta}} f(p_T) dp_T}{2 \int_{p_{T,1}}^{p_{T,2}} f(p_T) dp_T}$$

$$= \frac{\Delta \left(f(p_{T,1}) - f(p_{T,2}) \right)}{2 \int_{p_{T,1}}^{p_{T,2}} f(p_T) dp_T}$$

where $f(p_T) = dN(p_T)/dp_T$ and Δ is momentum shift

Assuming Δ doesn't vary strongly with p_T calculate $r_1 = v_1'/\Delta$ from the spectra

Not a well defined quantity, depends on the bin width and slope in the bin looked at

Value calculated in integrated p_T bin is not the average of the differential measurements, not a physical quantity

This is not what we measure. What we measure is the physical v₁