

DIVISION OF NUCLEAR PHYSICS 2024

PROBING THE PATH-LENGTH DEPENDENCE OF JET ENERGY LOSS IN $\sqrt{s_{NN}} = 200 \text{ GEV/c}^2$ AU-AU COLLISIONS

AUSTIN ROSYPAL

Quark-Gluon Plasma (QGP)

Soup of **deconfined strongly interacting quarks and gluons** that gives rise to a liquid-like matter with the **lowest specific shear viscosity** (η/s) known to man

Forms ~1 fm/c after a collision surpassing a critical temperature $T_C \sim 155 MeV$ (~2 trillion °C)

Lifetime of ~10 fm/c (10^{-23} seconds)

Jets in the QGP

Interaction Region Geometry

Centrality is a quantifier of the impact parameter between two colliding nuclei (how "head-on" an event is)

For this analysis: 0% (most central) ... 80% (most peripheral)

The STAR Experiment: Solenoidal Tracker at RHIC

Time Projection Chamber (TPC)

Event Plane Detector (EPD)

Detects tracks of charged particles Used to measure **charged track p_T spectra** for clustering into jets Detects the azimuthal distribution of final state charged particles Used to determine **initial collision geometry**

Analysis Specifications

Events

- \checkmark 4.76 million events
- $\sqrt{s_{NN}} = 200 \text{ GeV/c}^2$ Center of Mass Energy
- ✓ Minimum Bias Trigger
- ✓ z-Vertex Cut: $-30 < v_z < 20$ cm

Jet p_T Dependence on Centrality

More energy available in the QGP medium as the centrality of the collision **increases**

Due to more nucleonnucleon collisions occurring in the overlap region & increased soft collision contribution

Quantifying Ellipticity

 2^{nd} Order Reduced Flow Harmonic Vector: \mathbf{q}_2

$$q_2 = \frac{1}{\sqrt{M}} \left| \sum_{i=1}^M \cos(2\varphi_i), \sum_{i=1}^M \sin(2\varphi_i) \right| = \frac{1}{\sqrt{M}} \left| \sum_{i=1}^M e^{2i\varphi_i} \right| = \frac{1}{\sqrt{M}} |Q_2|$$

M: Charged Particle Multiplicity of Event

 φ_i : Azimuthal Angle of ith particle

A perfectly azimuthally symmetric event has $q_2 = 0$ q_2 increases with more elliptically shaped events Measured with the West Event Plane Detector

Defining Regions About the Event Plane

Event Plane approximates, at the detector level, the reaction plane: Plane spanned by the beam axis vector \hat{z} and the impact parameter vector \hat{b}

In-plane jets will traverse the **minor axis** of the QGP ellipsoid created in mid-peripheral collisions

Out-of-plane jets will traverse the **major axis**, encountering more QGP

Event Shape Engineering

Central Events

- Cause increased medium temperature, leading to more energy clustered in jets
- Limited q₂ range, low ellipticity

Peripheral Events

- Less energy clustered into jets
- Experience higher ellipticity

Allows for the **selection** of event geometry in centrality/ellipticity bins

q₂ Distributions by Centrality Class

Monotonic decrease in q_2 range with increasing event centrality

Peripheral events exhibit **highest ellipticity** of the shape of the particle distribution evolution

Central events are consistently radially symmetric

In vs. Out of Plane Suppression

Suppression of in-plane jets is evident (ratio < 1)

High q₂ events experience a slightly more enhanced suppression of jet yield in-plane

Event Plane Resolution Corrections

Highest event plane resolution measured between 20-30% collision centrality. Beyond 25% centrality, resolution decreases

Clear relationship between the event planes measured by the West and East EP Detectors on an event-by-event basis

$$EP_{Resolution} = \langle \cos(2(\Psi_2^a - \Psi_R)) \rangle$$

$$\sqrt{\langle \cos(2(\Psi_2^{East \; EPD} - \Psi_2^{West \; EPD})) \rangle}$$

Poskanzer & Voloshin, 1998

STAR Work in Progress

Summary / Conclusion

Event-Shape Engineering can be utilized to study pathlength dependent jet quenching in STAR

A suppression of in-plane jet yield is observed over the measured jet $\ensuremath{p_{\mathrm{T}}}$ range

Future Endeavors:

Event plane **resolutions** must be applied to the observables Study the event plane's resolution dependence on q_2 resolution Jet p_T spectra must be **unfolded** to account for detector effects