

Heavy-flavor femtoscopy in Au+Au collisions @ $\sqrt{s_{NN}}$ = 200 GeV at STAR

Priyanka Roy Chowdhury

Warsaw University of Technology, Poland

CF PWG Meeting, 28 November, 2024

Fitting C(k*) data for D- π pairs

- ✓ Fitting approach: LL, fixed scattering length (f₀)
- ✓ Results of χ^2 /NDF vs R for different interaction parameters
- Results for probability vs R for different interaction parameters
- Estimation of the lower limit on R and systematic unc. on this value
- ✓ Plots with fits for low R

NATIONAL SCIENCE CENTRE

Analysis Information

- Dataset: Au+Au, $\sqrt{s_{NN}} = 200 \text{ GeV}$
- Year: 2014
- Centrality: 0-80%
- Good events: 490 M

Event cuts

- $|V_z| < 6.0$ cm.
- $|V_z V_z^{VPD}| < 3.0 \text{ cm.}$
- $|V_x| > 1.0e^{-5}$ cm.
- $|V_y| > 1.0e^{-5}$ cm.
- $\sqrt{[(V_x)^2 + (V_y)^2]} \le 2.0$
- Centrality = 0-80%

Track cuts

- $p_{T} > 0.5 \text{ GeV/c}$
- |dca| > 0.0050 cm.
- nHitsFit >= 20
- $|\eta| <= 1.0$

PID cuts for Pions & Kaons

- $|n\sigma_{\pi}| < 3.0$
- $|n\sigma_{K}| < 2.0$
- $|n\sigma_p| < 2.0$
- $|\frac{1}{\beta} \frac{1}{\beta_{\Pi}}| < 0.03$ $|\frac{1}{\beta} \frac{1}{\beta_{K}}| < 0.03$ $|\frac{1}{\beta} \frac{1}{\beta_{p}}| < 0.03$ $|\frac{1}{\beta} \frac{1}{\beta_{p}}| < 0.03$ $\frac{nHitsFit}{nHitsFitMax} > 0.51$

Approach: by fixing parameters

The Lednicky–Lyuboshitz analytical model connects the correlation function with final-state strong interaction parameters

$$C(k^{*}) = 1 + \sum_{s} \rho_{s} \left[\frac{1}{2} \left|\frac{f^{s}(k^{*})}{r_{0}}\right|^{2} \left(1 - \frac{d_{0}^{s}}{2\sqrt{\pi}r_{0}}\right) + \frac{2\Re(f^{s})(k^{*})}{\sqrt{\pi}r_{0}}F_{1}(Qr_{0}) - \frac{\Im(f^{s}k^{*})}{r_{0}}F_{2}(Qr_{0})\right]$$

where , $f^{s}(k^{*})$ is scattering length, d_0^{s} is effective radius for total spin s (s = 0 or s = 1) state

 ρ_s is fraction of pairs with a given spin s ($\rho_0 = \frac{1}{4}$ and $\rho_1 = \frac{3}{4}$)

$$Q=2k^*$$
, $F_1(z)=\int_0^z dx e^{x^2-z^2}/z$, $F_2(z)=(1-e^{-z^2})/z$

This model assumes, average separation vector (\vec{r}) from eq. (1), follows Gaussian distribution

$$dN^{3}/d^{3}r^{*}e^{-r^{*2}/4r_{0}^{2}}$$

(2)

where, r_0 is the effective radius of the correlated source

STAR, Phys. Rev. C 74 (2006) 064906

Fixed parameters:

All 5 parameters are unknown. By fixing all, we performed χ^2 test to P of χ^2 test to check lower limit on source radius

 $Re(d_0) \& Im(d_0) = 0$ (acc. to zero effective range approximation)

 $Re(f_0) \& Im(f_0) = fixed$ (acc. to theory models used by ALICE)

 $r_0 = fixed$ (varies from 0.5 fm to 6 fm)

(1)

Motivation & list of fixed parameter

ALICE, Phys. Rev. D 110, 032004 (2024)

TABLE IV. Scattering lengths of the available theoretical models for the $D\pi$ interactions. The values are reported separately for the different isospin states.

Model		a_0 (fm)			
		$\mathrm{D}\pi(I=3/2)$	$D\pi(I=1/2)$		
Liu et al. [89]		-0.100 ± 0.002	$0.37^{+0.03}_{-0.02}$		
Guo et al. [90]		-0.11	0.33		
Guo et al. [91]	Fit-1B	$-0.101^{+0.005}_{-0.003}$	$0.31^{+0.01}_{-0.01}$		
	Fit-2B	$-0.099^{+0.003}_{-0.004}$	$0.34^{+0.00}_{-0.03}$		
Huang et al. [92]		-0.06 ± 0.02	0.61 ± 0.11		
Torres-Rincon et a	ıl. [93]	-0.101	0.423		
		$\mathrm{D}^*\pi(I=3/2)$	$\mathrm{D}^*\pi(I=1/2)$		
Liu et al. [94]		-0.13 - 0.00036i	0.27 - 0.00036i		

Guo [90]: https://doi.org/10.1103/PhysRevD.98.014510

- Fits using scattering length (a₀) values from Guo et al. [90] will be reported here
- Due to lack of statistics, we can't extract interaction parameters from current data but can study the lower limit of source radii

Guo (I = 1/2), $Re(f_0) = 0.33 fm$

Guo (I = 1/2), $Re(f_0) = 0.33$ fm

Probability of X2 vs source radii

Guo (I = 3/2), $Re(f_0) = -0.11 \text{ fm}$

Guo (I = 3/2), Re(f_0) = -0.11 fm

X2/NDF vs source radii 10 X2/NDF 1 0.1 0 1 2 3 4 5 6 7 8 9 R (fm)

Probability of X2 vs source radii 1 0.9 0.8 0.7 0.6 P(X2) 0.5 ------ Guo (I = 3/2) 0.4 0.3 0.2 0.1 0 0 2 3 5 6 7 8 1 4 9

R (Fm)

- From the studies with current set of parameters with CL 90%, acceptable value of D⁰-π emission source radii is R > 1.5 fm
- Systematic studies using different set of fixed f₀ values could be helpful to make precise conclusion

Back Up

Theory prediction of CF for $D\pi$ channels

Figure: Correlation functions for $D\pi$ channels predicted for R = 1, 2 and 5 fm sources represented by red, blue and green dashed lines respectively. Corresponding bands show uncertainties with 68% CL

• Interaction in I = 3/2 sector ($D^0\pi^-$) is weaker and repulsive

• Isospin combinations for $D\pi$ channels

$$egin{aligned} C_{D^+\pi^0} &= rac{2}{3}\,C^{D\pi}_{3/2} + rac{1}{3}\,C^{D\pi}_{1/2}, \ C_{D^0\pi^+} &= rac{1}{3}\,C^{D\pi}_{3/2} + rac{2}{3}\,C^{D\pi}_{1/2}, \ C_{D^0\pi^-} &= C^{D\pi}_{3/2}, \end{aligned}$$

- Predicted CF for $D^0\pi^+$ and $D^+\pi^0$ channels considered only I = $\frac{1}{2}$ state
- → Depletion at k ~ 215 MeV for R = 1 fm source, produce due to presence of the lightest D^{*}₀ state [D^{*}₀(2135)]
- For R = 2 fm and 5 fm sources, the minimum is present but diluted

Physics Goal

- Understand the interactions in the final state through two-particle (D⁰-K[±], D
 ⁰-K[±], D⁰-κ[±], D
 ⁰-π[±], D
 ⁰-p[±], D
 ⁰-p[±]) femtoscopic correlations
- Femtoscopy is sensitive As well as to the extent of the region from which correlated particles are emitted
- Average distance between emission points of correlated pairs (D⁰-hadron) is known as *'length of homogeneity'* or emission source radius (r₀) using LL model
- Theoretical inputs are required to connect the observed correlation functions and interaction parameters of charm and light quarks before hadronization

Figure 4: c/\overline{c} as a probe of QGP medium and final-state interaction

Physics Motivation – Quark Gluon Plasma

Phys. Rev. C 99 (2019)

 $Au+Au \setminus s_{NN} = 200 \text{ GeV } 0-10\%$

34908

1.5

(a)

- → Heavy quarks (c and b) are produced early in collisions → useful to probe all stages of heavy-ion collisions
- → Suppression of D⁰ meson at high p_T and significant D⁰ elliptic flow observed in heavy-ion reactions at RHIC
- Strong interaction of charm quarks with the quark-gluon plasma and its thermalization
- New observables to constrain different models and understand production mechanism

Figure 1: Stages of heavy-ion collisions

Femtoscopic correlation

- Femtoscopic correlations are observed between pair of particles with low relative momentum
- It is measured as a function of the reduced momentum difference (k*) of the pair of particles in rest frame

$$C(\vec{k}^*) = \int S(\vec{r}^*) \left| \Psi(\vec{k}^*, \vec{r}^*) \right|^2 \mathrm{d}^3 r^*,$$

- where, $S(\vec{r}^*) \rightarrow$ source emission function $\vec{r}^* \rightarrow$ relative separation vector $\Psi(\vec{k}^*, \vec{r}^*) \rightarrow$ pair wave function
- → Femtoscopic Correlation →QS + FSI
 - Quantum Statistics [QS]: Bose-Einstein / Fermi-Dirac
 - Final-State-Interaction [FSI]: Strong & Coulomb interaction
 - ➢ Only strong interaction contributes to D⁰/D¯⁰-h[±] femtoscopy
- → Applied formula to measure correlation function $C(k^*)$ for D^0/\overline{D}^0 $h^{+/-}$ pairs:

$$C(\vec{k}^*) = \mathcal{N} \frac{A(\vec{k}^*)}{B(\vec{k}^*)}.$$
 (2)

where $A(\vec{k}^*)$ and $B(\vec{k}^*)$ are k^{*} for correlated and uncorrelated pairs & \mathcal{N} is normalization factor

(1)

Femtoscopic correlation & k^{\ast}

Physics Motivation – Final State Interaction

• First studies of D-hadron interactions in pp at $\sqrt{s} = 13$ TeV by the ALICE experiment

Figure 7: Interaction behavior of $D^{\pm}at$ final state

- CF data for pD⁻ and pD⁺ pairs are compatible within (1.1 1.5)σ with theory predictions obtained from the hypothesis of Coulomb only interaction
- → Small values of $a_{\pi D}$ (scattering length) → small role of D meson re-scattering in the hadronic phase of heavy-ion collisions

Reconstruction of D⁰ meson

- Decay length distance between decay vertex and primary vertex (PV)
- → Distance of Closest Approach (DCA) between:

a) K⁻ & π⁺ - DCA₁₂
b) π⁺ & PV - DCA_π

- c) K⁻ & PV DCA_K
- d) D^0 & PV DCA_{D0}
- → θ angle between \vec{P} & decay length
- → Here $D^0 \rightarrow mixture \ of \ D^0 (K^-\pi^+) \ and \ \overline{D}^0 (K^+\pi^-)$

Topological selection criteria:

$D^0 \; p_T \; ({ m GeV/c})$	0 - 1	1-2	2-3	3-5	5-10
decay length $(\mu m) >$	145	181	212	247	259
DCA between 2 daughters $(\mu m) <$	84	66	57	50	60
DCA between D^0 and PV $(\mu m) <$	61	49	38	38	40
DCA between π and PV (μm) >	110	111	86	81	62
DCA between K and PV $(\mu m) >$	103	91	95	79	58
pointing angle $\cos(\theta) >$	0.99	0.99	0.99	0.99	0.99

 $1.6 < D^0$ mass <2.2 GeV/c²

p_T dependence of D^0 signal & its purity (Run 2014)

- D⁰ invariant mass range:
 1.82 1.91 GeV/c²
- Standard topological cuts used for D⁰ reconstruction
- D^0 purity:

signal (signal+background)

 Good S/B ratio for D⁰ signal p_T > 1 GeV/c

Particle Identification (PID)

Ref. - STAR: Phys. Rev. C 99, 034908 (2019)

Figure 8: Particle identification using TPC (left) and TOF (right)

- → dE/dx bands for π and K overlap around 0.7 GeV/c
- → To distinguish between π and K at lower momenta (< 1 GeV/c), TOF info was required

Correction of detector effects

1. Self correlation: Possible correlation between D⁰ candidates and their daughters were removed

Hadron (chosen for pairing with D^0) track id \neq Track id of $D^0(\pi^+K^-)$

2. Track splitting: Track splitting causes an enhancement of pairs at low relative pair momentum k^{*}. This enhancement is created by a single track reconstructed as two tracks, with similar momenta. Track splitting mostly affects identical particle combinations (here, $\pi_D^0 - \pi$ and $K_D^0 - K$), as one track may leave a hit in a single pad-row. Due to shifts of pad-rows, it can be registered twice. In order to remove split tracks, we applied following condition.

No. of hit points / Max no. of hit points > 0.51

Possible detector effects

Merging of tracks inside TPC

Approach 1:

- → $\delta r(i) < mean TPC distance separation <math>\rightarrow$ 'merged' hits
- $\delta r(i)$ distance between TPC hits of two tracks
- Pair of tracks with fraction of merged hits > 5% were removed as 'merged tracks'
- The technique was adopted from HBT approach
 Approach 2:
- → $\delta r(i) < threshold \rightarrow$ 'merged' hits

Approach 3:

- → **SE/ME of** $\Delta \eta$ **vs** $\Delta \phi$ **distribution** \rightarrow no dip around 0 \rightarrow negligible effect of merged tracks
- With variation of merging cuts → Negligible effect on correlation value, no correction applied

Corrections & Systematic Uncertainties

Pair-purity corrected correlation function:

 $C_{\text{measured}}^{\text{corr}}(k^*) = \frac{C_{\text{measured}}(k^*) - 1}{\text{PairPurity}} + 1, \text{ where PairPurity} = \mathbf{D}^0 \text{ purity } * \text{ hadron purity}$

Figure 10: Momentum distribution of D^0 - K and D^0 - π

- → Mean K and π momentum: ≈ 0.62 GeV/c and 0.57 GeV/c
- Due to overlap with other hadrons, K and π with p < 1 GeV/c were considered
- Kaon purity ~ $(97 \pm 3(syst.))\%$
- → Pion purity ~ (99 ± 0.5 (syst.))%
- Proton purity ~ $(99 \pm 0.5 \text{ (syst.)})\%$

Estimation of systematic uncertainties:

- I. Variation of D⁰ reconstruction criteria
- II. Variation of D⁰ invariant mass window
- III. Uncertainty from D⁰-h pair-purity correction

Priyanka Roy Chowdhury

Correlation functions using Run 2014 data

NLO + HMChPT, Phys. Rev. D 108, 014020

 $C(k^*)$ for D^0 -K pairs with systematic uncertainties (boxes). Green and pink bands are theory predictions of $C(k^*)$ for D^0 -K⁺ channel using source radii of 5 fm and 2 fm respectively

- C(k^{*}) calculated with *K* and π momentum < 1 GeV/c, *p* momentum < 1.2 GeV/c and D⁰ p_T > 1 GeV/c
- Ref. CF estimated for D⁰-K⁺ using next-to-leading order (NLO) Heavy Meson Chiral Perturbation Theory (HMChPT) scheme
- STAR data shows no significant correlations, but the data also consistent with theoretical model predictions with emission source size of 5 fm or larger
- Resonance effect of D_{S0}* (2317)[±] state is NOT visible due to large source size or large experimental uncertainties

