GPU hackathon report

Scott Snyder
Brookhaven National Laboratory, Upton, NY, USA

Oct 25, 2018

Scott Snyder (BNL) GPU hackathon report

BNL GPU hackathon

Sep. 17-21.

@ Invite groups to come to work
on opimizing an existing —— = =
application for GPUs.

@ ATLAS is far from being able to

GPU HACKATHON: =
Call for Applications =

Deadline to submit youniapplicatibiiil

Y

do this.

[WHO CAN APPLY.

Teams of 3 fo 6 developers
(students, researchers, programmers,
etc.) with applications fo port to or

The goal of this Hackathon is for
current or prospective user groups of
large hybrid CPU-GPU systems to
send teams of at least 3 developers

o | attended as a guest. S oms Por | eleng it aithr potenialy
GPU exparonce s ot requved. scalable application that needs to be
ported to GPU accelerators. or an
. H application running on accelerators
@ Goals: Start learning about [EVENT DATES. S se

practicalities of GPU

programming. Prototype
sharing an xAOD-style object

with a GPU.

September 17:21, 2018

[EVENT VENUE:

Computational Science Initiaive,
Brookhaven National Laboratory,
Upton, New York

Mentors from national labs, universities
and vendors with extensive experience
in programming with OpenACC/CUDA
will be in attendance. Teams are also
welcome to bring their own mentors.

For more information and application

submission. go to
https//wwwbnlgov/gpuhackathon2018

ORGANIZED BY:

Meifeng Lin. BNL
Sunita Chandrasekaran. UD
Tony Curtis. SBU

Martin Kong, BNL
Thomas Papatheodore. ORNL
Joseph Schoonover. Fluid Numerics

Questions? Contact Meifeng Lin, miin@bnl.gov, 6313444379

openact 2. PGI (1)) &a

Oct 25,2018 2 /23

§ Scott Snyder (BNL) : GPU hackathon report

GPU architecture

Unit [Thread mem| Device Unit [Thread mem|
Thread group 4 Thread group
5559995 §995955
Thread group Thread group
Local memory Local memory
$ $
Global memory
‘ Host Host memory
Y Scott Snyder (BNL) L Oct 25, 2018 3/23

GPU programming

@ Two APIs generally available:

» CUDA: Nvidia proprietary, closed-source. Useful only with nvidia
hardware. More mature.

» OpenCL: Attempts to be a vendor- and device-neutral platform.
Originated with Apple, now seems to be pushed mostly by AMD.
Open-source implementations exist to run on CPU resources. Less
mature.

@ Both support writing GPU code in C (with some limitations) and
C++ (with more limitations), but OpenCL does C++ only with the
new 2.2 version.

» Would have liked to use OpenCL for this exercise, but the nvidia
drivers available on the BNL cluster didn't support C++ with OpenCL.

@ Source:

» CUDA: Host/device source mixed in single file, tagged with compiler
directives. Process with CUDA compiler which produces object with
embedded CUDA binary code.

» OpenCL: Device code in separate source file. Compiled on-the-fly at
runtime; or alternately, compile in advance to binary intermediate code.

§ Scott Snyder (BNL) : GPU hackathon report Oct 25, 2018 4/23

High-level toolkits: SYCL

@ Single-source; modern C++; standardized.

@ Same source can be compiled for CPU and device.

@ CPU-only open-source version; one commercial implementation.
@ Looks interesting, but wasn't able to try it.

// wrap our data variable in a buffer
buffer<int, 1> resultBuf(data, range<1>(1024));

// create a command_group to issue commands to the queue
myQueue. submit ([&] (execution_handle<opencl22>& cgh) {
// request access to the buffer

// enqueue a prallel_for task
cgh.parallel_for<class simple_test>(range<1>(1024),
[=] (id<1> idx) { res[idx[0]] = idx[0]; });
}); // end of our commands for

auto res = resultBuf.get_access<access::mode::write>(cgh);

§ Scott Snyder (BNL) : GPU hackathon report Oct 25, 2018

5/23

High-level toolkits: Kokkos
@ Similar in intent to SYCL; didn’t look at it very closely.

. () =,
What is “Kokkos” ?
" KOKKOG (Greek)

= Translation: “granule” or “grain” or “speck”
= Like grains of salt or sand on a beach

= Programming Model Abstractions
= |dentify / encapsulate grains of data and parallelizable operations
= Aggregate these grains with data structure and parallel patterns
= Map aggregated grains onto memory and cores / threads

= An Implementation of the Kokkos Programming Model
= Sandia National Laboratories’ open source C++ library

Scott Snyder (BNL) GPU hackathon report Oct 25, 2018

6/ 23

High-level toolkits: StarPU

@ Framework for executing task graphs.

@ Tasks can execute on one a number of devices, chosen dynamically by

scheduler.

@ Tasks declare inputs and outputs. Scheduler respects dependencies.

e Framework is responsible for copying data to/from devices as needed.

StarPU Execution Model: Task Scheduling

Mapping the graph of tasks (DAG) on the hardware
= Allocating computing resources
= Enforcing dependency constraints
= Handling data transfers

e —

Voas k
« 5 8y (.
“\f\
: o

.Mu’a,- sta
Scott Snyder (BNL) i GPU hackathon report Oct 25, 2018

7/23

StarPU

@ Developed by a small group from Bordeaux.
@ Task graph orientation matches well what Athena is doing. ©

@ Package and interface are plain-C. User interfaces are untyped. Code
quality not great. ®
@ Basic concepts:
» Device: Coprocessing unit attached to the host.
» Handle: Opaque reference to a data object managed by StarPU.
» Task: Unit of processing. May run on either CPU or on a device, as
chosen by the scheduler. Has lists of handles for input, output, and

update dependencies.
» Codelet: Piece of code executed by a task. May have different versions

for CPU and each type of device.

§ Scott Snyder (BNL) : GPU hackathon report Oct 25, 2018 8 /23

Basic StarPU example

starpu_init (NULL);

// Data object.

static const int NX = 2048;

float v[NX] = {1, 0};

starpu_data_handle_t vector_handle;

starpu_vector_data_register (&vector_handle,
STARPU_MAIN_RAM,
reinterpret_cast<uintptr_t> (v),
NX, sizeof (v[0]));

starpu_codelet cl; starpu_codelet_init (&cl);
cl.cpu_funcs[0] = cpu_func; cl.cuda_funcs[0] = cuda_func;
cl.nbuffers = 1; cl.modes[0] = STARPU_RW;

float factor = 2.7;

starpu_task* task = starpu_task_create(); task->cl = &cl;
task->handles[0] = vector_handle;

task->cl_arg = &factor; task->cl_arg_size = sizeof (factor);

§ Scott Snyder (BNL) : GPU hackathon report Oct 25, 2018 9 /23

Basic StarPU example, cont.

starpu_task_submit (task);
starpu_task_wait_for_all();
starpu_data_unregister (vector_handle);
starpu_shutdown() ;

CPU function:

void cpu_func (void *buffers[], void* cl_arg)
{
float factor = *reinterpret_cast<float*> (cl_arg);
unsigned n = STARPU_VECTOR_GET_NX (buffers[0]);
float* val = reinterpret_cast<float*>
(STARPU_VECTOR_GET_PTR (buffers[0]));
for (unsigned i=0; i < mn; i++) {
val[i] *= factor;
}
}

§ Scott Snyder (BNL) : GPU hackathon report Oct 25, 2018

10 / 23

Basic StarPU example, cont.: CUDA function

static __global__ void vector_mult_cuda

(unsigned int n, float* val, float factor)

{
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n)
val[i] *= factor;
3

void cuda_func (void* buffers[], void* args)
{
float factor = *(float*)args;
unsigned n = STARPU_VECTOR_GET_NX (buffers[0]);
float* val = (float*) (STARPU_VECTOR_GET_PTR (buffers[0]));
const unsigned int threads = 64;
const unsigned int nblocks = (n + threads-1) / threads;
vector_mult_cuda<<<nblocks, threads, O,
starpu_cuda_get_local_stream()>>>
(n, val, factor);
cudaStreamSynchronize (starpu_cuda_get_local_stream());

§ Scott Snyder (BNL) : GPU hackathon report Oct 25, 2018 11 /23

xAOD data

Reminder: xAOD stores object data as individual vectors in a separate
store object, via abstract interface (but cached).

DataVector<Foo>
AuxElement 0 / IAuXStore
Foo
vector<int> vector<float>
"anint" "aFloat"
AuxElement 1
Foo
CIITTTTT] cache

@ Accessing data via element pointers would spoil vectorization.
e DataVector itself is anyway too complicated for GPU code (virtual
functions, exceptions, dynamic memory, STL).
@ Restrict functionality for this excercise: No dynamic variables; only
deal with entire objects; GPU can’t change container size.
1 Scott Snyder (BNL)| Oct 25,2018 12 /23

DataVectorAccessor
Define ‘Accessor’ object for use by GPU-style code.

class DataVectorAccessor { public:
DataVectorAccessor (const SG::AuxVectorData& ccc,
size_t sz, size_t accSize);

protected:
template <class T>
ATH_DEVHOST
T* arr (SG::auxid_t id) { return (T*)m_cache[id]; }

private:

struct VarDesc
{

SG::auxid_t m_id;

size_t m_eltsize; size_t m_offs;
};
size_t m_size; size_t m_nvar;
VarDesc* m_vars; void** m_cache;

§ Scott Snyder (BNL) : GPU hackathon report Oct 25, 2018 13 /23

Derived Accessor class

class CaloCellAccessor : public DataVectorAccessor {
public:
// Host only
// Inits base class; fills Id members.
CaloCellAccessor (const xAOD::CaloCellContainer& ccc);

ATH_DEVHOST floatx* eArray()
{ return arr<float>(m_eId); }

ATH_DEVHOST float e (size_t ndx) const

{ return arr<float>(m_eId) [ndx]; }

private:
SG::auxid_t m_eId;

§ Scott Snyder (BNL) i GPU hackathon report Oct 25, 2018 14 / 23

Accessor layouts

Host

Accessor
m_data m_vars m_cache

\ﬁo I Cache |

Device

Accessor
m_data m_vars m_cache

V4
Varinfo I Cache IVars
L4

Var Var

§: Scott Snyder (BNL) : GPU hackathon report Oct 25, 2018 15 / 23

StarPU Interface

@ StarPU allows adding custom types.

@ Also supports the notion of running a conversion between CPU and
device representations.

» Conversion can run on device.
» Possibly may have been simpler, but not used here.

@ Data object on a given node (CPU+-devices) described by an interface
structure.

» Plain C: must be able to copy with memcpy(); no destructor.
» One instance for each node managed by StarPU.
@ Define operations on interface (via struct of function pointers):
» Allocate on node.
» Free on node.
» Copy betewen nodes.

@ A bit tricky to be able to get copying to work properly, given
distinction between host/device memory. Eventually ended up
maintaining serveral copies of an Accessor object from an interface.

» Distinguishing between CPU pointers and device pointers is
error-prone; could the C4++ type system help? Probably would imply
distinct types for CPU and device.

§ Scott Snyder (BNL) : GPU hackathon report Oct 25, 2018 16 / 23

Final example

AthStarPU::Init init;

xAO0D: :CaloCellContainer cccl, ccc2;
. Fill cccl with N elts; ccc2 with N empty elts

{
CaloCellAccessor accl (cccl);
AthStarPU: :Handle<CaloCellAccessor> handlel (accl);
CaloCellAccessor acc2 (ccc2);
AthStarPU: :Handle<CaloCellAccessor> handle2 (acc2);
MyTask mytask;
mytask.submit (handlel, handle2);
starpu_task_wait_for_all();

}

// Read results from ccc2.

§ Scott Snyder (BNL) : GPU hackathon report Oct 25, 2018 17 / 23

Final example, cont.

class MyTask { public:

MyTask() {
starpu_codelet_init (&m_cl);
m_cl.cpu_funcs[0] = cpu_func; m_cl.cuda_funcs[0] = cuda_func;
m_cl.nbuffers = 2;
m_cl.modes[0] = STARPU_R; m_cl.modes[1] = STARPU_RW;
}

void submit (const AthStarPU::Handle<CaloCellAccessor>& hil,
AthStarPU: :Handle<CaloCellAccessor>& h2) {

starpu_task_submit (task (hl, h2));

}

starpu_task#* task (const AthStarPU::Handle<CaloCellAccessor>& hil,

AthStarPU: :Handle<CaloCellAccessor>& h2) {

starpu_task* task = starpu_task_create();
task->cl = &m_cl;
task->handles[0] = hi; task->handles[1] = h2;
return task;

}

starpu_codelet m_cl;

§ Scott Snyder (BNL) : GPU hackathon report Oct 25, 2018 18 / 23

Final example, cont.

void cpu_func (void *buffers[], void* /*cl_argx/)
{
const CaloCellAccessor& accl = dv_accessor<CaloCellAccessor>
(buffers[0]);
CaloCellAccessor& acc2 = dv_accessor<CaloCellAccessor>
(buffers[1]);
const size_t sz = accl.size();
STARPU_ASSERT_MSG (sz == acc2.size(), "Size mismatch.");
for (unsigned int i = 0; i < sz; i++) {
acc2.e(i) = accl.e(i) * 1.5;
acc2.eta(i) = accl.eta(i);
acc2.phi(i) = accl.phi(i);
acc2.hash(i) = accl.hash(i);
}
}

§ Scott Snyder (BNL) : GPU hackathon report Oct 25, 2018 19 /23

Final example, cont.

void cuda_func (void* buffers[], void* /*argsx*/) {
const CaloCellAccessor& accl =
dv_accessor<CaloCellAccessor> (buffers([0]);
CaloCellAccessor& acc2 =
dv_accessor<CaloCellAccessor> (buffers[0]);
const size_t sz = accl.size();
STARPU_ASSERT_MSG (sz == acc2.size(), "Size mismatch.");

const unsigned int threads = 64;
const unsigned int nblocks = (sz + threads-1) / threads;

const CaloCellAccessor& devaccl =
dv_dev_accessor<CaloCellAccessor> (buffers[0]);

CaloCellAccessor& devacc2 =
dv_dev_accessor<CaloCellAccessor> (buffers[1]);

cuda_copy<<<nblocks, threads, O,
starpu_cuda_get_local_stream()>>>
(sz, devaccl, devacc2);

cudaStreamSynchronize (starpu_cuda_get_local_stream());

§ Scott Snyder (BNL) : GPU hackathon report Oct 25, 2018 20 /23

Final example, cont.

static __global__ void cuda_copy (unsigned int n,
const CaloCellAccessor& accl, CaloCellAccessor& acc2)
{
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n) {
acc2.e(i) = accl.e(i) * 1.5;
acc2.eta(i) = accl.eta(i);
acc2.phi(i) = accl.phi(i);
acc2.hash(i) = accl.hash(i);
}
¥

Scott Snyder (BNL) i GPU hackathon report Oct 25, 2018 21 /23

Final thoughts 1

o Useful /interesting exercise.
» But only very exploratory prototyping — this code is not really useful.
» Didn’t have time to try any non-trivial processing on GPUs.

o StarPU is the closest fit so far to what we're doing in Athena.

» But still pretty far from what we'd want.

» At this point, thinking it's probably better to lift ideas/code from
StarPU (and elsewhere) and incorporate into Athena than the other
way around.

@ xAOD-style data model looks usable from GPUs.

» Still need to think about the best programming interface.
» Can leverage the idea further. Example: a CaloCell container could
have variables for eta, phi, etc. that are shared between events.

§ Scott Snyder (BNL) : GPU hackathon report Oct 25, 2018 22 /23

Final thoughts 2

@ Some basic conceptual changes needed in Athena?
» Multiple ways to produce an object in the scheduler.

* Need some sort of cost model?
% Device memory constraints on scheduling? Haven't seen this
mentioned in StarPU literature.

» Scheduler should be able to queue tasks in advance of when they're
ready to run — avoid latency on device side.

% StarPU dedicates a CPU core to each device for scheduling — say
that's needed to keep the device fed.

» StoreGate manages multiple replicas of objects.
» Copy operations declared to scheduler as algorithms?

e Will continue to play with this as time/resources allow.

§ Scott Snyder (BNL) : GPU hackathon report Oct 25, 2018 23 /23

