
GPU hackathon report

Scott Snyder

Brookhaven National Laboratory, Upton, NY, USA

Oct 25, 2018

Scott Snyder (BNL) GPU hackathon report Oct 25, 2018 1 / 23

BNL GPU hackathon

Sep. 17–21.

Invite groups to come to work
on opimizing an existing
application for GPUs.

ATLAS is far from being able to
do this.

I attended as a guest.

Goals: Start learning about
practicalities of GPU
programming. Prototype
sharing an xAOD-style object
with a GPU.

Teams of 3 to 6 developers
(students, researchers, programmers,
etc.) with applications to port to or
optimize on a GPU accelerator. Prior
GPU experience is not required.

WHO CAN APPLY:

September 17-21, 2018

EVENT DATES:

Computational Science Initiative,
Brookhaven National Laboratory,
Upton, New York

EVENT VENUE:

The goal of this Hackathon is for
current or prospective user groups of
large hybrid CPU-GPU systems to
send teams of at least 3 developers
along with either a (potentially)
scalable application that needs to be
ported to GPU accelerators, or an
application running on accelerators
which needs optimization.

Mentors from national labs, universities
and vendors with extensive experience
in programming with OpenACC/CUDA
will be in attendance. Teams are also
welcome to bring their own mentors.

For more information and application
submission, go to
https://www.bnl.gov/gpuhackathon2018

GPU HACKATHON:
Call for Applications
All programming paradigms are welcome

Deadline to submit your application: June 30, 2018

ORGANIZED BY:

Meifeng Lin, BNL Martin Kong, BNL
Sunita Chandrasekaran, UD Thomas Papatheodore, ORNL
Tony Curtis, SBU Joseph Schoonover, Fluid Numerics

Questions? Contact Meifeng Lin, mlin@bnl.gov, 631-344-4379

FluidNumerics

Scott Snyder (BNL) GPU hackathon report Oct 25, 2018 2 / 23

GPU architecture

Scott Snyder (BNL) GPU hackathon report Oct 25, 2018 3 / 23

GPU programming

Two APIs generally available:
▸ CUDA: Nvidia proprietary, closed-source. Useful only with nvidia

hardware. More mature.
▸ OpenCL: Attempts to be a vendor- and device-neutral platform.

Originated with Apple, now seems to be pushed mostly by AMD.
Open-source implementations exist to run on CPU resources. Less
mature.

Both support writing GPU code in C (with some limitations) and
C++ (with more limitations), but OpenCL does C++ only with the
new 2.2 version.

▸ Would have liked to use OpenCL for this exercise, but the nvidia
drivers available on the BNL cluster didn’t support C++ with OpenCL.

Source:
▸ CUDA: Host/device source mixed in single file, tagged with compiler

directives. Process with CUDA compiler which produces object with
embedded CUDA binary code.

▸ OpenCL: Device code in separate source file. Compiled on-the-fly at
runtime; or alternately, compile in advance to binary intermediate code.

Scott Snyder (BNL) GPU hackathon report Oct 25, 2018 4 / 23

High-level toolkits: SYCL

Single-source; modern C++; standardized.

Same source can be compiled for CPU and device.

CPU-only open-source version; one commercial implementation.

Looks interesting, but wasn’t able to try it.

// wrap our data variable in a buffer

buffer<int, 1> resultBuf(data, range<1>(1024));

// create a command_group to issue commands to the queue

myQueue.submit([&](execution_handle<opencl22>& cgh) {

// request access to the buffer

auto res = resultBuf.get_access<access::mode::write>(cgh);

// enqueue a prallel_for task

cgh.parallel_for<class simple_test>(range<1>(1024),

[=](id<1> idx) { res[idx[0]] = idx[0]; });

}); // end of our commands for

Scott Snyder (BNL) GPU hackathon report Oct 25, 2018 5 / 23

High-level toolkits: Kokkos
Similar in intent to SYCL; didn’t look at it very closely.

Scott Snyder (BNL) GPU hackathon report Oct 25, 2018 6 / 23

High-level toolkits: StarPU
Framework for executing task graphs.
Tasks can execute on one a number of devices, chosen dynamically by
scheduler.
Tasks declare inputs and outputs. Scheduler respects dependencies.
Framework is responsible for copying data to/from devices as needed.

Scott Snyder (BNL) GPU hackathon report Oct 25, 2018 7 / 23

StarPU

Developed by a small group from Bordeaux.

Task graph orientation matches well what Athena is doing.

Package and interface are plain-C. User interfaces are untyped. Code
quality not great.

Basic concepts:
▸ Device: Coprocessing unit attached to the host.
▸ Handle: Opaque reference to a data object managed by StarPU.
▸ Task: Unit of processing. May run on either CPU or on a device, as

chosen by the scheduler. Has lists of handles for input, output, and
update dependencies.

▸ Codelet: Piece of code executed by a task. May have different versions
for CPU and each type of device.

Scott Snyder (BNL) GPU hackathon report Oct 25, 2018 8 / 23

Basic StarPU example

starpu_init (NULL);

// Data object.

static const int NX = 2048;

float v[NX] = {1, 0};

starpu_data_handle_t vector_handle;

starpu_vector_data_register (&vector_handle,

STARPU_MAIN_RAM,

reinterpret_cast<uintptr_t> (v),

NX, sizeof (v[0]));

starpu_codelet cl; starpu_codelet_init (&cl);

cl.cpu_funcs[0] = cpu_func; cl.cuda_funcs[0] = cuda_func;

cl.nbuffers = 1; cl.modes[0] = STARPU_RW;

float factor = 2.7;

starpu_task* task = starpu_task_create(); task->cl = &cl;

task->handles[0] = vector_handle;

task->cl_arg = &factor; task->cl_arg_size = sizeof (factor);

Scott Snyder (BNL) GPU hackathon report Oct 25, 2018 9 / 23

Basic StarPU example, cont.

starpu_task_submit (task);

starpu_task_wait_for_all();

starpu_data_unregister (vector_handle);

starpu_shutdown();

CPU function:

void cpu_func (void *buffers[], void* cl_arg)

{

float factor = *reinterpret_cast<float*> (cl_arg);

unsigned n = STARPU_VECTOR_GET_NX (buffers[0]);

float* val = reinterpret_cast<float*>

(STARPU_VECTOR_GET_PTR (buffers[0]));

for (unsigned i=0; i < n; i++) {

val[i] *= factor;

}

}

Scott Snyder (BNL) GPU hackathon report Oct 25, 2018 10 / 23

Basic StarPU example, cont.: CUDA function

static __global__ void vector_mult_cuda

(unsigned int n, float* val, float factor)

{

unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

if (i < n)

val[i] *= factor;

}

void cuda_func (void* buffers[], void* args)

{

float factor = *(float*)args;

unsigned n = STARPU_VECTOR_GET_NX (buffers[0]);

float* val = (float*) (STARPU_VECTOR_GET_PTR (buffers[0]));

const unsigned int threads = 64;

const unsigned int nblocks = (n + threads-1) / threads;

vector_mult_cuda<<<nblocks, threads, 0,

starpu_cuda_get_local_stream()>>>

(n, val, factor);

cudaStreamSynchronize (starpu_cuda_get_local_stream());

} Scott Snyder (BNL) GPU hackathon report Oct 25, 2018 11 / 23

xAOD data
Reminder: xAOD stores object data as individual vectors in a separate
store object, via abstract interface (but cached).

DataVector<Foo>

AuxElement 0

Foo

Foo

AuxElement 1

vector<int>

 "anInt"

vector<float>

 "aFloat"

IAuxStore

cache

Accessing data via element pointers would spoil vectorization.

DataVector itself is anyway too complicated for GPU code (virtual
functions, exceptions, dynamic memory, STL).

Restrict functionality for this excercise: No dynamic variables; only
deal with entire objects; GPU can’t change container size.
Scott Snyder (BNL) GPU hackathon report Oct 25, 2018 12 / 23

DataVectorAccessor
Define ‘Accessor’ object for use by GPU-style code.

class DataVectorAccessor { public:

DataVectorAccessor (const SG::AuxVectorData& ccc,

size_t sz, size_t accSize);

...

protected:

template <class T>

ATH_DEVHOST

T* arr (SG::auxid_t id) { return (T*)m_cache[id]; }

...

private:

struct VarDesc

{

SG::auxid_t m_id;

size_t m_eltsize; size_t m_offs;

};

size_t m_size; size_t m_nvar;

VarDesc* m_vars; void** m_cache;

...

Scott Snyder (BNL) GPU hackathon report Oct 25, 2018 13 / 23

Derived Accessor class

class CaloCellAccessor : public DataVectorAccessor {

public:

// Host only

// Inits base class; fills Id members.

CaloCellAccessor (const xAOD::CaloCellContainer& ccc);

ATH_DEVHOST float* eArray()

{ return arr<float>(m_eId); }

ATH_DEVHOST float e (size_t ndx) const

{ return arr<float>(m_eId)[ndx]; }

...

private:

SG::auxid_t m_eId;

...

Scott Snyder (BNL) GPU hackathon report Oct 25, 2018 14 / 23

Accessor layouts

Scott Snyder (BNL) GPU hackathon report Oct 25, 2018 15 / 23

StarPU Interface
StarPU allows adding custom types.
Also supports the notion of running a conversion between CPU and
device representations.

▸ Conversion can run on device.
▸ Possibly may have been simpler, but not used here.

Data object on a given node (CPU+devices) described by an interface
structure.

▸ Plain C: must be able to copy with memcpy(); no destructor.
▸ One instance for each node managed by StarPU.

Define operations on interface (via struct of function pointers):
▸ Allocate on node.
▸ Free on node.
▸ Copy betewen nodes.

A bit tricky to be able to get copying to work properly, given
distinction between host/device memory. Eventually ended up
maintaining serveral copies of an Accessor object from an interface.

▸ Distinguishing between CPU pointers and device pointers is
error-prone; could the C++ type system help? Probably would imply
distinct types for CPU and device.

Scott Snyder (BNL) GPU hackathon report Oct 25, 2018 16 / 23

Final example

AthStarPU::Init init;

xAOD::CaloCellContainer ccc1, ccc2;

... Fill ccc1 with N elts; ccc2 with N empty elts ...

{

CaloCellAccessor acc1 (ccc1);

AthStarPU::Handle<CaloCellAccessor> handle1 (acc1);

CaloCellAccessor acc2 (ccc2);

AthStarPU::Handle<CaloCellAccessor> handle2 (acc2);

MyTask mytask;

mytask.submit (handle1, handle2);

starpu_task_wait_for_all();

}

// Read results from ccc2.

Scott Snyder (BNL) GPU hackathon report Oct 25, 2018 17 / 23

Final example, cont.

class MyTask { public:

MyTask() {

starpu_codelet_init (&m_cl);

m_cl.cpu_funcs[0] = cpu_func; m_cl.cuda_funcs[0] = cuda_func;

m_cl.nbuffers = 2;

m_cl.modes[0] = STARPU_R; m_cl.modes[1] = STARPU_RW;

}

void submit (const AthStarPU::Handle<CaloCellAccessor>& h1,

AthStarPU::Handle<CaloCellAccessor>& h2) {

starpu_task_submit (task (h1, h2));

}

starpu_task* task (const AthStarPU::Handle<CaloCellAccessor>& h1,

AthStarPU::Handle<CaloCellAccessor>& h2) {

starpu_task* task = starpu_task_create();

task->cl = &m_cl;

task->handles[0] = h1; task->handles[1] = h2;

return task;

}

starpu_codelet m_cl;

Scott Snyder (BNL) GPU hackathon report Oct 25, 2018 18 / 23

Final example, cont.

void cpu_func (void *buffers[], void* /*cl_arg*/)

{

const CaloCellAccessor& acc1 = dv_accessor<CaloCellAccessor>

(buffers[0]);

CaloCellAccessor& acc2 = dv_accessor<CaloCellAccessor>

(buffers[1]);

const size_t sz = acc1.size();

STARPU_ASSERT_MSG (sz == acc2.size(), "Size mismatch.");

for (unsigned int i = 0; i < sz; i++) {

acc2.e(i) = acc1.e(i) * 1.5;

acc2.eta(i) = acc1.eta(i);

acc2.phi(i) = acc1.phi(i);

acc2.hash(i) = acc1.hash(i);

}

}

Scott Snyder (BNL) GPU hackathon report Oct 25, 2018 19 / 23

Final example, cont.

void cuda_func (void* buffers[], void* /*args*/) {

const CaloCellAccessor& acc1 =

dv_accessor<CaloCellAccessor> (buffers[0]);

CaloCellAccessor& acc2 =

dv_accessor<CaloCellAccessor> (buffers[0]);

const size_t sz = acc1.size();

STARPU_ASSERT_MSG (sz == acc2.size(), "Size mismatch.");

const unsigned int threads = 64;

const unsigned int nblocks = (sz + threads-1) / threads;

const CaloCellAccessor& devacc1 =

dv_dev_accessor<CaloCellAccessor> (buffers[0]);

CaloCellAccessor& devacc2 =

dv_dev_accessor<CaloCellAccessor> (buffers[1]);

cuda_copy<<<nblocks, threads, 0,

starpu_cuda_get_local_stream()>>>

(sz, devacc1, devacc2);

cudaStreamSynchronize (starpu_cuda_get_local_stream());

} Scott Snyder (BNL) GPU hackathon report Oct 25, 2018 20 / 23

Final example, cont.

static __global__ void cuda_copy (unsigned int n,

const CaloCellAccessor& acc1, CaloCellAccessor& acc2)

{

unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

if (i < n) {

acc2.e(i) = acc1.e(i) * 1.5;

acc2.eta(i) = acc1.eta(i);

acc2.phi(i) = acc1.phi(i);

acc2.hash(i) = acc1.hash(i);

}

}

Scott Snyder (BNL) GPU hackathon report Oct 25, 2018 21 / 23

Final thoughts 1

Useful/interesting exercise.
▸ But only very exploratory prototyping — this code is not really useful.
▸ Didn’t have time to try any non-trivial processing on GPUs.

StarPU is the closest fit so far to what we’re doing in Athena.
▸ But still pretty far from what we’d want.
▸ At this point, thinking it’s probably better to lift ideas/code from

StarPU (and elsewhere) and incorporate into Athena than the other
way around.

xAOD-style data model looks usable from GPUs.
▸ Still need to think about the best programming interface.
▸ Can leverage the idea further. Example: a CaloCell container could

have variables for eta, phi, etc. that are shared between events.

Scott Snyder (BNL) GPU hackathon report Oct 25, 2018 22 / 23

Final thoughts 2

Some basic conceptual changes needed in Athena?
▸ Multiple ways to produce an object in the scheduler.

☀ Need some sort of cost model?
☀ Device memory constraints on scheduling? Haven’t seen this

mentioned in StarPU literature.

▸ Scheduler should be able to queue tasks in advance of when they’re
ready to run — avoid latency on device side.
☀ StarPU dedicates a CPU core to each device for scheduling — say

that’s needed to keep the device fed.

▸ StoreGate manages multiple replicas of objects.
▸ Copy operations declared to scheduler as algorithms?

Will continue to play with this as time/resources allow.

Scott Snyder (BNL) GPU hackathon report Oct 25, 2018 23 / 23

