
NGE on Summit and
Harvester Integration

ATLAS WFM SW weekly meeting
14/03/2019

Next Generation Executor (NGE) Motivation
● Run multiple tasks concurrently and consecutively in a SINGLE batch job:

○ Tasks are programs, i.e., executables, not methods, functions, threads, or processes.
○ Tasks are executed within the scope of the batch job, i.e., walltime is still binding.

● Late binding:
○ Tasks are NOT packaged into the batch job before submission.
○ Tasks are scheduled and then placed within the batch job at runtime.

● Task and resource heterogeneity:
○ Scheduling, placing and running CPU/GPU/OpenMM/MPI tasks in the same batch job
○ Use single/multiple CPU/GPU for the same tasks and/or across multiple tasks.

● Use cases:
○ Molecular dynamics, HEP, and any other use case requiring multiple tasks on Summit.

● Current limitations:
○ Still a prototype: API needs to be extended depending on the integration with Harvester
○ Early adoption of Summit: reliability and scaling still under evaluation.

NGE and RADICAL-Pilot on Summit
● NGE:

○ REST API for RADICAL-Pilot
○ No code rewriting/porting needed.

● RADICAL-Pilot:
○ Writing dedicated launcher

subsystems. Focussing on JSRUN
first but experimenting also with
PRRTE.

● RADICAL-SAGA:
○ RS to LSF. Required reviving old

code in the LSF adaptor.

Code available at:
NGE: https://github.com/radical-cybertools/radical.nge
RP: https://github.com/radical-cybertools/radical.pilot
RS: https://github.com/radical-cybertools/saga-python

https://github.com/radical-cybertools/radical.nge
https://github.com/radical-cybertools/radical.pilot
https://github.com/radical-cybertools/saga-python

Deployment of NGE and RADICAL-Pilot on Summit
● NGE:

○ OpenShift container, DTN or any
linux-based machine within OLCF.

● RADICAL-Pilot:
○ Client: same as NGE.
○ Agent: MOM node + work nodes.
○ MongoDB: OpenShift container.

● RADICAL-SAGA:
○ Same as NGE.

Code available at:
NGE: https://github.com/radical-cybertools/radical.nge
RP: https://github.com/radical-cybertools/radical.pilot
RS: https://github.com/radical-cybertools/saga-python

Launch/Work nodes

OS container, DTN, OLCF
resource

https://github.com/radical-cybertools/radical.nge
https://github.com/radical-cybertools/radical.pilot
https://github.com/radical-cybertools/saga-python

Status of Scheduling/Launching Jobs on Summit

● LSF and JSRUN used
to place and launch
tasks on Summit
nodes

● Reliability to be tested
with many concurrent
instances

● Scalability bounded
by MOM node
resources

Scheduling and Launching Jobs on Summit
● Scalability issues addressed

by executing RP Executor on
work nodes

● Each RP Executor can serve
multiple work nodes, up to
external scalability boundaries

● MOM node:
○ 1 JSRUN command launches

one RP Executor on a work node

● Work node:
○ 1 JSRUN command launches 1

task on the same or another work
node.

JSRUN Resource Spec and Placement
● Summit: 44x4 ‘cores’, 6 GPU, 512GB+96GB ram/HBM2 per ‘node’
● JSRUN Explicit Resource File (ERF) examples:

○ task0: my_app

rank : 0-3: { host: 1; cpu: {0-3},{4-7},{8-11},{12-15}} : task0

○ task1: mygpu_app

rank : 0-5: { host: 1; cpu: {16},{20},{24},{28},{32},{36};
 gpu: {0,1,2,3,4,5}} : task1

○ task2: mympi_gpu_app

rank : 0-1: { host: 2; cpu: {0-15},{16-31};
 gpu: {0,1}} : task2
rank : 2-4: { host: 3; cpu: {32-47},{48-63},{64-79}} : task2

● Task 0: 4 processes, each with 4 threads, run on node 1
● Task 1: 6 processes, each with 1 GPU running, run on node 1
● Task 2: 6 processes, each with 16 threads, 2 with 1 GPU, run on nodes 2,3

RADICAL-Pilot and JSRUN
● Who supports it: only LSF batch system vendor

● How we use it: running many concurrent instances in 1 or 2 layered arch.

● How do we manage heterogeneity: ERF per task for placement control

● pros & cons

○ pros: system tool, supported, fine control over placement, heterogeneous tasks
○ cons: buggy, slow, LSF only

Scheduling and Launching Jobs on Summit
● PRRTE project abstracts

away LSF and JSRUN
● PRTE DVM

○ Head Node Process
○ Daemons (1 per node)

● PRUN: uses PRTE DVM
to place and execute
tasks on nodes

● PRTE daemons use
PMI-X as interface to
LSF (or SLURM, etc.)

PMI-X and PRRTE
● PMI-X : Process Management Interface for EXascale

https://github.com/pmix/pmix/wiki
● PRRTE : PMI-X Reference RunTime Environment

https://github.com/pmix/prrte

● Who supports it: MPI implementations, batch system vendors
● How we use it: private DVM, concurrent tasks
● How do we manage heterogeneity: CL parameters for placement
● pros & cons:

○ pros: heterogeneous tasks (as with JSRUN), (potentially) fast, portable
○ cons: young code, no official support

RADICAL-Pilot API

● rp.PilotManager()
● rp.UnitManager()
● rp.ComputePilotDescription()
● rp.ComputeUnitDescription()

RADICAL-Pilot, NGE and Harvester

NGE/Harvester integration status and roadmap
● Status:

○ NGE and RADICAL-Pilot can support execution of workloads on Summit
○ Interface between Harvester and NGE tested for bulk tasks (jobs in Harvester lingo)

submissions and monitoring
○ Corresponding Submitter, Monitor and Messenger modules for Harvester have been

implemented
○ Concurrent CPU/GPU payloads were executed

● Roadmap:
○ Continuing test executions of ATLAS payload via NGE on Titan and comparing

results with executions on Summit
○ Test execution of ATLAS CPU/GPU payload via NGE on Summit
○ Evaluate reliability and performance on Summit
○ Estimated effort: 1 Harvester, 1 NGE devs, 3-6 months depending on time allocation
○ Follow up: whole chain ATLAS payload execution.

Thank you

Code available at:
● NGE: https://github.com/radical-cybertools/radical.nge
● RP: https://github.com/radical-cybertools/radical.pilot
● RS: https://github.com/radical-cybertools/saga-python

RADICAL:
● Projects: http://radical.rutgers.edu/projects/
● Publications: http://radical.rutgers.edu/publications/

https://github.com/radical-cybertools/radical.nge
https://github.com/radical-cybertools/radical.pilot
https://github.com/radical-cybertools/saga-python
http://radical.rutgers.edu/projects/
http://radical.rutgers.edu/publications/

RADICAL-Pilot Architectural Components
● Client:

○ PilotManager: enables submitting a batch job to the indicated machine, requesting a number
of cores/GPUs for a defined walltime.

○ UnitManager: enables scheduling a set of compute units on a pilot for execution, including
staging in of the input files required by each unit.

○ StagerOutput: enables staging out of unit output files.

● Agent:
○ StagerInput: retrieves staging in files from UnitManager and makes them available to the units
○ Scheduler: schedules units on available executor(s). Different scheduling algorithms available
○ Executor: place and execute units on the required resources (fraction of worknode, full

worknode, multiple worknodes, CPU, GPU or CPU+GPU)
○ StagerOutput: sends unit output files to the client

