NGE on Summit and
Harvester Integration

ATLAS WFM SW weekly meeting
14/03/2019

Next Generation Executor (NGE) Motivation

e Run multiple tasks concurrently and consecutively in a SINGLE batch job:
o Tasks are programs, i.e., executables, not methods, functions, threads, or processes.
o Tasks are executed within the scope of the batch job, i.e., walltime is still binding.

e [ate binding:
o Tasks are NOT packaged into the batch job before submission.
o Tasks are scheduled and then placed within the batch job at runtime.

e Task and resource heterogeneity:
o Scheduling, placing and running CPU/GPU/OpenMM/MPI tasks in the same batch job
o Use single/multiple CPU/GPU for the same tasks and/or across multiple tasks.

e Use cases:
O Molecular dynamics, HEP, and any other use case requiring multiple tasks on Summit.

e Current limitations:
o Still a prototype: API needs to be extended depending on the integration with Harvester
o Early adoption of Summit: reliability and scaling still under evaluation.

NGE and RADICAL-Pilot on Summit

Client

PilotManager «------- A{ Notifier ~— ——---—-—-~ UnitManager
[} I
| : |
Stager Output W Queue —> Scheduler ‘
Queue [Queue
Launcher %— PR Queue Queue —>‘ Stager Input ‘ Updater ‘
T ——]
o l—‘
(SAGA) ‘ MongoDB ‘
! A I
l | ! | Resource l
RMS Queue ‘ Tunnel‘
— |
Agent ‘ v
Updater AgentManager
——————————— Stager Input H(—{ ueue
Queue E i Q
——————————— Scheduler <—< Queue ‘
|
v
—————————— Executer Queue ‘
—————————— Stager Output %—{ Queue ‘
[|Component [Queue — Control Flow |]Multiple Instances

| |Comm. Sub-component

| Comm. Queue

-— Comm. Flow

o NGE:
o REST API for RADICAL-Pilot
o No code rewriting/porting needed.

e RADICAL-Pilot:

O Writing dedicated launcher
subsystems. Focussing on JSRUN
first but experimenting also with
PRRTE.

e RADICAL-SAGA:

o RS to LSF. Required reviving old
code in the LSF adaptor.

Code available at:
NGE: https://github.com/radical-cybertools/radical.nge
RP: https://aithub.com/radical-cybertools/radical.pilot
RS: https://aithub.com/radical-cybertools/saga-python

https://github.com/radical-cybertools/radical.nge
https://github.com/radical-cybertools/radical.pilot
https://github.com/radical-cybertools/saga-python

Deployment of NGE and RADICAL-Pilot on Summit

Client

PllotManager ———————— A{ N ot1f1er ————————— ‘ UnitManager

EQS Contalner DTN OLCF
(resou rce>‘ Stager Input fJ ‘ Updater

SAGA ‘ MongoDB ‘

— : s f
l | ! | Resource l

‘ Tunnel ‘

i1 A 1
T T

Agent ; v
Updater AgentManager

——————————— Stager Input H(—{ ueue
Queue E i Q

Launch/Work nodes

¥
——————————— Executer H Queue ‘

—————————— Stager Output %—{ Queue ‘

[|Component [Queue — Control Flow |]Multiple Instances

[|Comm. Sub-component | |Comm. Queue --—Comm. Flow

e NGE:

o OpenShift container, DTN or any
linux-based machine within OLCF.

e RADICAL-Pilot:

O Client: same as NGE.

o Agent: MOM node + work nodes.
o MongoDB: OpenShift container.

e RADICAL-SAGA:
o Same as NGE.

Code available at:
NGE: https://github.com/radical-cybertools/radical.nge
RP: https://aithub.com/radical-cybertools/radical.pilot
RS: https://aithub.com/radical-cybertools/saga-python

https://github.com/radical-cybertools/radical.nge
https://github.com/radical-cybertools/radical.pilot
https://github.com/radical-cybertools/saga-python

Status of Scheduling/Launching Jobs on Summit

Launch node

RADICAL-Pilot Agent Bootstrapper

RADICAL-Pilot Scheduler | workload (tasks)

RADICAL-Pilot Executor |Task " Task " Task ” Task |

LSF: JSRUN LSF: JSRUN |mmm |LSF:JSRUN

Node 1 Node 2

LSF daemon LSF daemon

t At C t|t tt]|t C

a a a P ala alala P

s s s U s|s s|s|s U

k k k G k| k k| k|k G
P P
U U

RADICAL-Pilot (batch job)

LSF

Workload (tasks)

Node n

LSF daemon

t|t tft|t C

ala ajala P

S|S S|S|S U

k| k k| k|k G
P
U

LSF and JSRUN used
to place and launch
tasks on Summit
nodes

Reliability to be tested
with many concurrent
instances

Scalability bounded
by MOM node
resources

Scheduling and Launching Jobs on Summit

Launch node

RADICAL-Pilot Agent Bootstrapper

LSF: JSRUN ILSF: JSRUN [RADICAL-Pilot Scheduler

]

|

Node 1

LSF daemon,

Node 2

LSF daemon

P e 0|

X0 o -

RP-Exec. 2

C'UG)‘C'UO

t

a
S
k

t

a
S
k

t

a
s
k

0o~

0o~

c‘uo‘c:'uo

Node n + 1

LSF daemon A

Node n + 2

LSF daemon

s

~ 0o o

RP-Exec. At
a

JSRUN s
(] k

JSRUN

cno[cvo

t

a
s
k

t

a
s
k

t

a
s
k

v o

~ 0 o

c*no[c*uo

| RADICAL-Pilot (batch job) |

| LSF

| Workload (tasks)

Node n

LSF daemon

v

tt t]t |t C

ala alala P

s|s s|s|s U

k| k k| k|k G
P
U

Node m

LSF daemon

v

tt t]t|t C

ala alala P

s|s s|s|s U |

k| k k| k |k G
P
U

Scalability issues addressed
by executing RP Executor on
work nodes

Each RP Executor can serve
multiple work nodes, up to
external scalability boundaries
MOM node:

o 1 JSRUN command launches
one RP Executor on a work node

Work node:

o 1 JSRUN command launches 1
task on the same or another work
node.

JSRUN Resource Spec and Placement

e Summit: 44x4 ‘cores’, 6 GPU, 512GB+96GB ram/HBM2 per ‘node’
e JSRUN Explicit Resource File (ERF) examples:

) task0O: my app
rank : 0-3: { host: 1; cpu: {0-3},{4-7},{8-11},{12-15}} : taskO
) taskl: mygpu app
rank : 0-5: { host: 1; cpu: {16},{20},{24},{28},{32},{36};
gpu: {0,1,2,3,4,5}} : taskl
O taskZ2: mympi gpu app
rank : 0-1: { host: 2; cpu: {0-15},{16-31};
gpu: {0,1}} : task2
rank : 2-4: { host: 3; cpu: {32-47},{48-63},{64-79}} : task2

e Task 0: 4 processes, each with 4 threads, run on node 1
e Task 1: 6 processes, each with 1 GPU running, run on node 1
e Task 2: 6 processes, each with 16 threads, 2 with 1 GPU, run on nodes 2,3

RADICAL-Pilot and JSRUN

e \Who supports it: only LSF batch system vendor
e How we use it: running many concurrent instances in 1 or 2 layered arch.
e How do we manage heterogeneity: ERF per task for placement control

e pros & cons

o pros: system tool, supported, fine control over placement, heterogeneous tasks
o cons: buggy, slow, LSF only

Scheduling and Launching Jobs on Summit

Launch node

RADICAL-Pilot Agent Bootstrapper

PRTE DMV (HNP) RADICAL-Pilot
Scheduler
LSF: JSRUN | LSF: JSRUN (===
Node 1 Node 2
LSF daemon | LSF daemon
PRTE DVM (da mon)‘ PRTE DVM (daemon)
RP-Exec. A [t c t|t tft |t &
ala P ala alala P —_—
s|s U | s|s s|s|s U |
k| k G k| k k| k| k G
[pn__| f f
U U
Node n + 1 Node n + 2
LSF daemon LSF daemon
PRTE DVM (demon) PRTE DVM (daemon)
RP-Exec. ft'|t g tt t]t]t g
ala ala alala
= 4 4 N O X O
k| k G k| k k| k|k G
[prn__| 0 0
EXEEN U U

| RADICAL-Pilot (batch job

| LSF

| PRTE

| Workload (tasks)

)|
|
|
|

Node n

LSF daemon

PRTE DVM (daemon)

'

PRTE DVM (daemon)

t|t t]t]t C

ala ajala P

S|S S[S|S U—

k| k k| k| k G
P
U

Node m

LSF daemon

‘lt tit|t

ala alala
s|s s|s|s
k|k k{k|k

cno‘cno

PRRTE project abstracts
away LSF and JSRUN
PRTE DVM

o Head Node Process
o Daemons (1 per node)

PRUN: uses PRTE DVM
to place and execute
tasks on nodes

PRTE daemons use
PMI-X as interface to
LSF (or SLURM, etc.)

PMI-X and PRRTE

PMI-X : Process Management Interface for EXascale
https://github.com/pmix/pmix/wiki

PRRTE : PMI-X Reference RunTime Environment
https://github.com/pmix/prrte

Who supports it: MPI implementations, batch system vendors
How we use it: private DVM, concurrent tasks
How do we manage heterogeneity: CL parameters for placement

pros & cons:
o pros: heterogeneous tasks (as with JSRUN), (potentially) fast, portable
o cons: young code, no official support

RADICAL-Pilot API

use the resource specified as argument, fall back to localhost

try : resource = sys.argv[l] o I"pPI|OtManagel’()
except: resource = 'local.localhost'’ .
e rp.UnitManager()
create a pilot manage in the session . L
pmgr = rp.PilotManager(session=session) o rpComputeP||OtDeSC|"|pt|On()
define an [n]-core local pilot that runs for [x] minutes i inti ()
pdesc = rp.ComputePilotDescription({ ® rpcomputeUHItDeSCFIptlon
'resource’ : resource,
'cores' : 64, # pilot size
'runtime’ : 10, # pilot runtime (min)
'project’ : config[resource]['project'],
'queue’ : config[resource]['queue'],
'access_schema' : config[resource]['schema’]
}
submit the pilot for launching
pilot = pmgr.submit pilots(pdesc)
n = 128 # number of units to run # create a unit manager, submit units, and wait for their completion
cuds = list() umgr = rp.UnitManager (session=session)
for i in range(0, n): umgr.add pilots(pilot)
create a new CU description, and fill it. umgr.submit units(cuds)
cud = rp.ComputeUnitDescription() umgr.wait units()
cud.executable = '/bin/date’

cuds.append(cud)

RADICAL-Pilot, NGE and Harvester

..

1 Front node) Preparatory node

Rutgers Pilot 1 - Rutgers Pilot N
Harvester

Submitter I WorkerAdjuster Messenger Monitor

Next Generation Executor

P2 P3| | P4 | P5
Batch 1 Batch N
P& P7 | P8 P7 P8

Y Y

P3 Workdir P4 Workdir |

NGE/Harvester integration status and roadmap

e Status:

©)

©)

©)

NGE and RADICAL-Pilot can support execution of workloads on Summit

Interface between Harvester and NGE tested for bulk tasks (jobs in Harvester lingo)
submissions and monitoring

Corresponding Submitter, Monitor and Messenger modules for Harvester have been
implemented

Concurrent CPU/GPU payloads were executed

e Roadmap:

©)

o O O O

Continuing test executions of ATLAS payload via NGE on Titan and comparing
results with executions on Summit

Test execution of ATLAS CPU/GPU payload via NGE on Summit

Evaluate reliability and performance on Summit

Estimated effort: 1 Harvester, 1 NGE devs, 3-6 months depending on time allocation
Follow up: whole chain ATLAS payload execution.

Thank you

Code available at:
e NGE: https://github.com/radical-cybertools/radical.nge
e RP: https://github.com/radical-cybertools/radical.pilot
e RS: https://github.com/radical-cybertools/saga-python

RADICAL:
e Projects: http://radical.rutgers.edu/projects/
e Publications: http://radical.rutgers.edu/publications/

https://github.com/radical-cybertools/radical.nge
https://github.com/radical-cybertools/radical.pilot
https://github.com/radical-cybertools/saga-python
http://radical.rutgers.edu/projects/
http://radical.rutgers.edu/publications/

RADICAL-Pilot Architectural Components

e C(Client:

(@)

(@)

PilotManager: enables submitting a batch job to the indicated machine, requesting a number
of cores/GPUs for a defined walltime.

UnitManager: enables scheduling a set of compute units on a pilot for execution, including
staging in of the input files required by each unit.

StagerOutput: enables staging out of unit output files.

e Agent:

(@)

(@)

(@)

Stagerlnput: retrieves staging in files from UnitManager and makes them available to the units
Scheduler: schedules units on available executor(s). Different scheduling algorithms available
Executor: place and execute units on the required resources (fraction of worknode, full
worknode, multiple worknodes, CPU, GPU or CPU+GPU)

StagerOutput: sends unit output files to the client

