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WHY COLLIDERS? New physics lives at higher energies

Higher energy
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Discovering new physics is getting harder and harder

1. How do we discover new physics?

2. The “tracking problem” of particle physics

3. Tracking is hard, and getting harder

4. Graphs are a natural representation of tracks
5. GNNs and other ML approaches to tracking
6. The road to fully learned tracks
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New physics needs collisions...

Higgs boson (LHC),
Quarks (SLAC, Fermilab), and

*  Neutrino mass (Super-Kamiokande)

* Supersymmetry,
* Composite Higgs,
* Dark matter,

* Leptoquarks,

* W/Z prime, and

e Axions

Discovered
with collisions

Could be
discovered
with collisions
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... but collisions are messy

High energy collisions bring huge
numbers of particles (unfortunately)

Want to see the particles coming
out of the collisions, which we can
get from the curves (“tracks”)

moving through a magnetic field
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... but collisions are messy

High energy collisions bring huge
numbers of particles (unfortunately)

Want to see the particles coming out
of the collisions, which we can get
from the curves (“tracks”) moving
through a magnetic field

Why not just watch the particles
curving directly?

Every observation/measurement
affects particle track

We need to observe the tracks as
little as possible
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(with your
eyes closed)



And every time...
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the puzzle
becomes...















...complicated

New physics requires high
energy and high precision

* This implies carefully
tracking millions of particles
per event through the (as-
few-as-possible) layers of
a detector

* Each collision comprises of
dozens of events

* Each second produces tens
of millions of collisions
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The jigsaw leads to the “Tracking Problem” of new physics
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New physics requires high
energy and high precision

This implies carefully

tracking millions of particles

per event through the (as-
few-as-possible) layers of
a detector

Each collision comprises of
dozens of events

Each second produces tens
of millions of collisions
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The jigsaw leads to the “Tracking Problem” of new physics

New physics requires high
energy and high precision

* This implies carefully
tracking millions of particles
per event through the (as-
few-as-possible) layers of
a detector

* Each collision comprises of
dozens of events

* Each second produces tens
of millions of collisions
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The jigsaw leads to the “Tracking Problem” of new physics

* New physics requires high
energy and high precision

} * This implies carefully
I| tracking millions of particles

| - A particle interacting rer event through the (as-

few-as-possible) layers of

with a layer is a “hit” «detecor

* Each collision comprises of
dozens of events

* Each second produces tens

of millions of collisions
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The jigsaw leads to the “Tracking Problem” of new physics

We need a fast, high-
accuracy method to
connect hits into tracks
to determine the types
and energies of
particles coming out of
every event
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Current techniques will* not work on next-gen colliders

Standard doom-and-gloom plot
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Collider physics has 4 steps

1. Observe hits on layers
2. Join hits into track

3. Convert track into particle
information

4. (Dis)prove supersymmetry
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We want to build tracks

1. Observe hits on layers

2. Join hits into track ThIS IS our fOCUS

3. Convert track into particle information

4. (Dis)prove supersymmetry
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Previous ML Approaches

Single track with noise 2D Multi-track in 2D
* Tracks as images (CNN)
* Tracks as sequences K
of points (LSTM) ”
0
0 10 20 30 40

Hit Classification accuracy
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Graphs are a natural way to represent tracks

* We have a collection of hits
* Want to “Connect the Dots”

* A natural way is to represent the problem is as a
graph
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Graphs are a natural way to represent tracks

Some toy
data...

y direction

x direction
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Graphs are a natural way to represent tracks

Join the
hits in some
clever/dumb
way...

y direction

x direction
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Graphs are a natural way to represent tracks

The tracks

should be
in here

y direction

x direction
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What is a graph?

A .0 o‘
COLLECTION .
OF NODES : :
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What is a graph?

AND EDGES o

EDGE ®
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What is a graph?

NODES + v .
EDGES = .
DOUBLETS :
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What is a graph?

Pittsburg/ Pittsburg

NODES
CAN HAVE
FEATURES

/

NODE FEATURE
e.g. “West Oakland”
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What is a graph?

Pittsburg/ Pittsburg

EDGES
CAN HAVE
FEATURES

EDGE FEATURE
e.g. “Under Maintenance
— Single Track”
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What is a graph?

FEATURES

GRAPH FEATURE
e.g. “Sunday Timetable”
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The tracking problem can be considered edge classification

Join the nodes

In some

dumb /clever

way...
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The tracking problem can be considered edge classification

Classify edges
with score
between [0, 1]

score > cut: true
score < cut: fake
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The tracking problem can be considered edge classification

Ultimate goal e
Is fo connect — ',
doublets into . .
tracks ) ’
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Realistic tracking is complicated

Ultimate goal

Is to connect

doublets into
tracks

) ~ A .S. DEPARTMENT OF Offlce of
rTr_rr\rrl |'"| BERKELEY LAB ENERGY ‘ Science



Realistic tracking is complicated

Dataset

* “TrackML Kaggle
Competition” dataset

* Generated by simulation

e 8000 collisions to train on

 Each collision has up to
100,000 hits of around
10,000 particles
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Enter the Graph Neural Network

. Takes graph features (node-level, edge-level and graph-level)
Performs transformations on those features

Runs through a neural net

h WD -

Returns graph predictions (node-level, edge-level or graph-
level)

Is a generalisation of Convolutional Neural Net (aka deep
learning)
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Convolutional neural nets in 13 seconds

* Simply connecting every piece of information in a big equation does not always
produce good predictions

“Convolving” (i.e. combining complex chunks of information into simpler chunks that
can be trained upon) can reveal “high-level features”

Convolution Pooling Convolution Pooling Fully Fully

Connected Connected
with . . ‘H“h

Input Image Feature maps Pooled Feature maps Pooled | Dog(01)
Feature Maps Feature Maps Loocat(o4)
{ Deer{0.94) !

[ ] ! Lion(0.2) H
AlLabPage Data Source - Open Internet various sources Image Source - hitps:/fvini blog.com via @vinod1975 ' i i
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A GNN generalises a CNN

* Convolutions with matrices really just connect
neighbours in 2-D space

* A GNN connects neighbours in N-D

* Not necessarily flat — the geometry is determined
by edge and node features, and edges between
nodes
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Passing information around the graph gives it learning power

* Can make a node °
“aware” of its neighbours
by concatenating the
neighbouring hidden
features

* [|terating this @
neighbourhood learning °
passes information around
the graph
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Passing information around the graph gives it learning power

Message passing o f
+ )/ :
Attention mechanism . \
Excellent prediction L
performance s,
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Al/ML usage in ExaTrkX @ Berkeley — The Lay of the Land

* Doublet classification (Steve & Xiangyang): MPNN, AGNN

* Triplet classification (Daniel): Concatenated AGNN

* Doublet classification for building (Nick): Embedded space + Doublet MLP
* End-to-End Track Classification (Nick): Embedded Clustering + GNN

* Doublet classification (Xiangyang): Layer-pair MLPs

* Distributed training (Steve)

* Architecture exploration & Node regression (Daniel): Other GNN convolutions and

aggregations, track parameter regression
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Al/ML usage in ExaTrkX @ Berkeley — The Lay of the Land

* Doublet classification (Steve & Xiangyang): MPNN, AGNN

* Triplet classification (Daniel): Concatenated AGNN

Will cover in next few slides
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Al/ML usage in ExaTrkX @ Berkeley — The Lay of the Land

* Doublet classification for building (Nick): Embedded space + Doublet MLP

* End-to-End Track Classification (Nick): Embedded Clustering + GNN

3D space Latent space MLP in ball

. ° o
(o} e o
- . IR 2% ° ° o o 0%, o %o
. . . . ’ ° o ©
) . : : b ° °
. . . H : . . . . o o
H ; . . . . : : ! (o] Q (o]
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M . ) : . °
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: . _ . o o°
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Al/ML usage in ExaTrkX @ Berkeley — The Lay of the Land

* Doublet classification (Xiangyang): Layer-pair MLPs MLP 4

| MLP 3

MLP 2
MLP 1

;r’;:rﬁ' |-'ﬁ| BERKELEY LAB Y Office of

Science



Al/ML usage in ExaTrkX @ Berkeley — The Lay of the Land

Self-explanatory?

* Distributed training (Steve)

* Architecture exploration & Node regression (Daniel): Other GNN convolutions and

aggregations, track parameter regression

;r’;:rﬁ' |-'ﬁ| BERKELEY LAB eAY Office of

Science



GNN Edge prediction architecture

[Ho. Ho] [H1. Ho] [Hi]

Input Graph Graph Output
m_’ Net\l?vork - Netw%rk ™ Netwr())rk Netv\Pork "{ ] l

Message Passing

(o | IR [voowwe | [ oo - - [N —

[Ho, X] [wo] [Hi, X] [wi] [Hi X] [wi]
[ [ [ Attention Message Passing

H X] [w H,, X
[ o, X] [ ﬂ] (M1, X] Attention Message Passing
with Recursion

] 1|r'r1&s
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Edge prediction architecture

* Input node features /}
* Hidden node features

* Hidden edge features (;)

* Edge score 270

* Attention aggregation

* New hidden node features . .
X n iferations

* New hidden edge features (hyperparameter)

* New edge score
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Edge prediction architecture

* Input node features
e Hidden node features

* Hidden edge features

* Edge score

* Attention aggregation

* New hidden node features . .
X n iferations

* New hidden edge features

* New edge score
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Edge prediction architecture

* Input node features
* Hidden node features

* Hidden edge features

* Edge score

* Attention aggregation

* New hidden node features . .
X n iferations

* New hidden edge features

* New edge score
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Edge prediction architecture

* Input node features
* Hidden node features

* Hidden edge features

* Edge score

* Attention aggregation

* New hidden node features . .
X n iferations

* New hidden edge features

* New edge score
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Edge prediction architecture

* Input node features ﬁ*
* Hidden node features

0.6

* Hidden edge features

* Edge score

* Attention aggregation

* New hidden node features o erations

* New hidden edge features 0.4 0.9 0.1 0.8 0.8

o oo

.S. DEPARTMENT OF Offlce Of
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Edge prediction architecture

* Input node features
* Hidden node features

s

* Hidden edge features ®

* Edge score

* Attention aggregation

O.
* New hidden node features . .
X n iferations

* New hidden edge features 0.4

* New edge score
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Edge prediction architecture

* Input node features

* Hidden node features
* Hidden edge features
* Edge score

* Attention aggregation

* New hidden node features . :
X n iterations

* New hidden edge features

* New edge score
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Edge prediction architecture

* Input node features
* Hidden node features

* Hidden edge features

* Edge score

* Attention aggregation

* New hidden node features . .
X n iferations

* New hidden edge features

* New edge score
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Edge prediction architecture

* Input node features ﬁ*
* Hidden node features

0.2 0.1

* Hidden edge features
* Edge score
* Attention aggregation
* New hidden node features L

X n iterations
* New hidden edge features (hyperparameter) 0.2 0.9 0.30.9 0.2
* New edge score N / \ ii
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Model output

Edges with higher scores are darker than that with lower scores
Edges with scores < 0.01 are removed for visualization purpose.
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[ fake
[ true

0.8

0.6

0.4
Model output

0.2

1.0

0.0

Edges with higher scores are darker than that with lower scores

64

Edges with scores < 0.01 are removed for visualization purpose.



105 o

104 4

103 §

102 .

101 4

100 §

10-1 ' : : :
0.0 0.2 0.4 0.6 0.8 1.0

Model output

Edges with higher scores are darker than that with lower scores
Edges with scores < 0.01 are removed for visualization purpose. 65



£ [ fake
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Model output

Edges with higher scores are darker than that with lower scores
Edges with scores < 0.01 are removed for visualization purpose. 66
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£ [ fake
105 1 1 true
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Model output

Edges with higher scores are darker than that with lower scores
Edges with scores < 0.01 are removed for visualization purpose. 68
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Now we have classified doublets

Each edge has
a score
between [0, 1]

How do we

make tracks...
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Now we have classified doublets

Each edge has

a score
between [0, 1]

How do we

make tracks...
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Why not simply join together our doublet predictions?

Pretty easy
decision

Distance from
detector centre
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Doublet choice can be ambiguous

Not so easy...
so teach the network
how to combine

Distance from
detector centre
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But a GNN doesn’t know about “triplets”

A GNN only knows
about nodes

Distance from
detector centre

and edge
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Moving to a “doublet graph” gives us back GNN power

X3
0.84
Now...
nodes represent doublets,
X edges represent triplets
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Moving to a “doublet graph” gives us back GNN power

(

X, )
0.99
Now...

nodes represent doublets,
edges represent triplets
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The triplet classifier runs with all the benefits of the doublet classifier

* Aim is to beat all traditional methods of finding true
triplets

* Can then either continue to 4, 5, ...-plets in order to
create and end-to-end GNN track builder...

* ...or hand off the triplets as seeds to the traditional
techniques, knowing we can be confident in their
accuracy

Office of
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Triplet GNN performs

very well

Gold: Unambiguously correct triplet or
quadruplet

400 A

~z,

-
<,

"4
s

Other colours: False positive /negative 200

. R e e S P LYo

Key: _ > R
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.
e

Silver: Ambiguously correct triplet or quadruplet - \ S ,
(i.e. edge shared by correct triplet and ' = :
false positive triplet)

r
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v
e
L

Bronze dashed: Correct triplet, but missed 0 3
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Triplet GNN performs

very well

Gold: Unambiguously correct triplet or
quadruplet

Other colours: False positive /negative

Key:

Silver: Ambiguously correct triplet or quadruplet
(i.e. edge shared by correct triplet and
false positive triplet)

Bronze dashed: Correct triplet, but missed
quadruplet (i.e. edge shared by correct
triplet and false negative triplet)

Red: Completely false positive triplet

Blue dashed: Completely false negative triplet
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Triplet GNN improves

doublet GNN results

400 4

Black: Triplet classifier correctly

labelled, doublet classifier -

mislabelled

Red: Doublet classifier correctly
labelled, triplet classifier
mislabelled

In this graph, triplet classifier 2001

Fixes 389 edges

Worsens 10 edges
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Score threshold gives a smarter triplet classifier

* Excellent performance: # tr‘p'EtStC'aSS‘ﬁEd
>_ as true
.« o Efficiency =
« 99.09% efﬂuency Y Total # of true
LI_ triplets
But...

* Problem: combinatorically increasing graph size
e.g. For TrackML data:

« 0(1,000) tracks,

« 0(6,000) hits,

« 0(28,000) doublets,
- 0(100,000) triplets
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Score threshold gives a smarter triplet classifier

* Excellent performance: # tr‘p'EtStC'aSS‘ﬁEd
>_ as true
o« o Efficiency =
« 99.09% efﬂuency Y Total # of true
LI_ triplets

* Solution: Cut doublet input before triplet construction
* Doublet threshold of 0.04 retains 98% efficiency

» Reduces doublets 0(28,000) - 0(6,000)
* We thus have a sustainable process to N-plet GNN
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Howdy from the Exa.TrkX Collaboration!

* Mission

Optimization, performance and validation studies of ML
approaches to the Exascale tracking problem, to enable
production-level tracking on next-generation detector systems.

* People

« Caltech: Joosep Pata, Maria Spiropulu, Jean-Roch Vlimant,
Alexander Zlokapa

LGB B N N
[ ]
]
[ ]

« Cincinnati: Adam Aurisano, Jeremy Hewes

* FNAL: Giuseppe Cerati, Lindsey Gray, Thomas Klijnsma,
Jim Kowalkowski, Gabriel Perdue, Panagiotis Spentzouris

e LBNL: Paolo Calafiura (Pl), Nicholas Choma, Steve Farrell,
Xiangyang Ju, Daniel Murnane, Prabhat

« ORNL: Aristeidis Tsaris
« SLAC: Kasuhiro Terao, Tracy Usher
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* Full pipeline of Embedded Graph Building =2 Doublet Classifier = Triplet Classifier

* Leverage multi-GPU/multi-node distributed training and inference

* Transfer as much data pre/post-processing to GPUs /multi-process as possible (e.g. RAPIDS,
CuPy, Numba)

* Optimise model hyperparameters (e.g. Ray Tune, Weights & Biases)
* Explore other model architectures (e.g. ¢)

* Investigate adding more features to classifiers (e.g. embedded space co-ordinates, detector
pixel information)
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BACKUP
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Discovering new physics is getting harder and harder

* New physics needs high energy Collider Energy Cost

100
* Discovery cost is increasing with energy _ .
- c ¢ . . 9
scale  (LHC = $4.46 Billion) 5. . ip
" ¢ ‘ ................... °
5 R S
G e oo °
s " .
@ 000 0.01 o o 10 100
S ®
o .
I
0.1
Higher energy (TeV) ]
@® Cost (min) Adapted from
® Cost (max) [V Shiltsev, 2014,
"""""" Power (Cost (min)) JINST 9 T07002]
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Discovering new physics is getting harder and harder

* New physics needs high energy Collider Energy Cost
30
* Discovery cost is increasing with energy _ :
. . [
scale (LHC = $4.46 Billion) g
o S :
EH) S P R e
* Maybe there’s hope: Less than linear T B T
i S . ..............
nerease: ol S .
_g) . P .
0
0 10 20 30 40 R 50
Higher energy (TeV) .
@® Cost (min) Adapted from
@® Cost (max) [V Shiltsev, 2014,
"""""" Power (Cost (min)) JINST 9 T07002]
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Discovering new physics is getting harder and harder

* New physics needs high energy Collider Energy Cost
30
* Discovery cost is increasing with energy _ '
. . C
scale (LHC = $4.46 Billion) g
[a'a] L 4 [ J
n ] °
. e:e) N R SR s
* Maybe there’s hope: Less than linear A S
. o vy ..............
increase! R R — |
_g) . P .
T 58
* Nothing is that easy... i
° 0 10 20 30 40 R 50
e With LHC run 3 (2021-25), more energy, igher energy {TeV)
@® Cost (min) a _e rom
more problems L et 07002)
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But smashing things is not really the aim

* Dream is to produce a lone {Higgs boson, tau lepton, vector boson, ...} to study its
properties

* These are heavy (e.g. Higgs = 133 x Proton), so we need to introduce high energy to
produce them

Ingredient 1:

Relativity: It doesn’t know

Proton , yi 1 does
— 2 its velocity /kinetic energy
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But smashing things is not really the aim

* Dream is to produce a lone {Higgs boson, tau lepton, vector boson, ...} to study its
properties

* These are heavy (e.g. Higgs = 133 x Proton), so we need to introduce high energy to
produce them

Ingredient 1: Need to introduce.... Ingredient 2:
E Available E
Proton energy - Proton
= 2E
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Aside: quick

notation

relevant elements How many selected
I 1 items are relevant?

false negatives true negatives
(0] Precision = ——

© D

How many relevant
items are selected?

* Recall = Efficiency

true positives false positives
Recall = —

C

What fraction of the
elements are true?

* Precision = Purity

Accuracy = —

selected elements [D
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Graph construction

1.0+

e
fo

®

Start with hits from the TrackML Challenge

e
o

* Detector geometry

* We select hits from barrel

o
»
I}

* Other heuristical cuts: no doubles, implicit
pT cut (from TrackML)

N particles after selection / N total particles

0.2 —e— total
—eo— reconstructable
—e— Darrel
—e— no-missing-hits
0.0 T T T T | | |
0.5 1.0 1.5 2.0 2.5 3.0 3.5
pT [GeV]
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Triplet Classifier

107t

—— Train —— Validation
Validation Architecture:
0998 -
1. Input network,
0996 1 2. (Edge network, Node
" & 0994 4 ne’rwork) X 3,
8§10 g 3. Edge network out
0,992
0.990 Triplet train set: ],920
- Doublet train set: 1,920
0 10 20 0 0 50 &0 0 10 20 0 0 50 &0
Epoch Epoch
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Triplet Classifier

ROC curve, AUC = 1.000
10° § 1 fake 10{ ——— = 10 Th h Id
O real ' \ e resho
10° e
0.8 08 e

] . Accuracy 0.9993 0.9998

06 C 06
10° 2
£
=
8
107 0.4 o 04

0 WF:T ) - N Purity 0.9870 0.9935

100 4

IS A oo~ S Jowl? Efficiency 0.9978  0.9945

T T
0o 0z 04 06 08 10 0.0 02 04 0.6 0.8 10 0.0 02 04 06 08 10
Model output Model threshold False positive rate

Compare with doublet classifier:

ROC curve, AUC = 0.998 ThreShOId
10° 4 g :': e ::__::__‘_;»-'i:/ 0 ( s
10° 4 08 /’// \"‘. 08 1
" ) Accuracy 0.9737 0.9804
[ o 2o Purity 0.8941 0.9449
02 02
a0 || — Sncncy Efficiency 0.9906 0.9615
R 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

Model output Model threshold False positive rate
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Triplet Classifier

( with no pr cut )

ROC curve, AUC = 1.000
=0 0 ——1 | " Ul ael: __
N 8 08 /'./,-
l Accuracy 0.9994 0.9995
107 4 0.4 J;i 04 4
e e |7 Purity ~ 0.9742  0.9890
o 0.0 DI2 DI4 D.‘G 08 10 N D.ICI eﬁﬁde‘:‘:’ D.I4 D.IG 0.8 lIO w D.IOI D.IZ D.I4 DIG Dlﬁ ]_‘0 EffiCi ency O ¢ 9 8 5 7 O ¢ 976 8

Compare with doublet classifier:

Seel ol — ) e
/-{__"'“‘--._\ fﬁ /”
10° 3 08 N 08 //’"
. Accuracy 0.9848 0.9891
107 4 _,_,_t— 2 .
e Purity 0.8668  0.9465
02 0.2 4 .’,"
o] = G Efficiency 0.9478 0.9090
w 0o DI2 D.I4 D.‘G 08 10 D.ICI D.IZ D.I4 D.IG k] lIO D.IU D.IZ . [‘).I4 » DIG DIS ]_‘0
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We can supercharge a particular GNN

n_graph_iters hidden_dim Best Accuracy
Js 0.98 —

0:96 —

1. Optimising hyperparameters with Weights & Biases [wandb.ai]
(Hyperparameters are usually chosen by-hand to control the learning process)

2. Threshold on doublet scores:
Order of magnitude improvement in triplet classifier
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We could supercharge all GNNs

* We don’t know which GNN works best

* Every day sees more techniques being constructed — flash list
* Implementing by hand is time-consuming

* Would like a GNN-generator

* Call it ArchetrkX

* Represents an ML architecture (i.e. the collection of neural nets, convolutions, transformations, etc.)
itself as a graph — a computation graph

* This graph can be randomly generated, run as a GNN on the data, and tested for accuracy
* We can optimise the best GNN architecture by applying a GNN to this computation graph
* Meta-GNN optimisation, all run in ArchetrkX

% U.S. DEPARTMENT OF ‘ Office of
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ArchetrkX performance

* Simple image showing the GNN architecture generation
* Preliminary results of a generated architecture

* Parallel co-ordinates example of results
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