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WHY COLLIDERS? New physics lives at higher energies

Higher energy
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Discovering new physics is getting harder and harder

1. How do we discover new physics?

2. The “tracking problem” of particle physics

3. Tracking is hard, and getting harder

4. Graphs are a natural representation of tracks

5. GNNs and other ML approaches to tracking

6. The road to fully learned tracks
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The usual story: Smashing atoms into millions of pieces is useful
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• Higgs boson (LHC), 

• Quarks (SLAC, Fermilab), and

• Neutrino mass (Super-Kamiokande)

• Supersymmetry, 

• Composite Higgs, 

• Dark matter, 

• Leptoquarks, 

• W/Z prime, and

• Axions

5

New physics needs collisions…

Discovered 

with collisions

Could be

discovered 

with collisions
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… but collisions are messy

• High energy collisions bring huge 

numbers of particles (unfortunately)

• Want to see the particles coming 

out of the collisions, which we can 

get from the curves (“tracks”) 

moving through a magnetic field

6
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… but collisions are messy

• High energy collisions bring huge 
numbers of particles (unfortunately)

• Want to see the particles coming out 
of the collisions, which we can get 
from the curves (“tracks”) moving 
through a magnetic field 

• Why not just watch the particles 
curving directly? 

• Every observation/measurement 
affects particle track

• We need to observe the tracks as 
little as possible

7
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(with your 

eyes closed)
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And every time…
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the puzzle 

becomes…
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…complicated

17

• New physics requires high 

energy and high precision

• This implies carefully 

tracking millions of particles 

per event through the (as-

few-as-possible) layers of 

a detector

• Each collision comprises of 

dozens of events

• Each second produces tens 

of millions of collisions
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The jigsaw leads to the “Tracking Problem” of new physics

• New physics requires high 

energy and high precision

• This implies carefully 

tracking millions of particles 

per event through the (as-

few-as-possible) layers of 

a detector

• Each collision comprises of 

dozens of events

• Each second produces tens 

of millions of collisions

18
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The jigsaw leads to the “Tracking Problem” of new physics

19

• New physics requires high 

energy and high precision

• This implies carefully 

tracking millions of particles 

per event through the (as-

few-as-possible) layers of 

a detector

• Each collision comprises of 

dozens of events

• Each second produces tens 

of millions of collisions
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The jigsaw leads to the “Tracking Problem” of new physics

20

A particle interacting

with a layer is a “hit”

• New physics requires high 

energy and high precision

• This implies carefully 

tracking millions of particles 

per event through the (as-

few-as-possible) layers of 

a detector

• Each collision comprises of 

dozens of events

• Each second produces tens 

of millions of collisions
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The jigsaw leads to the “Tracking Problem” of new physics

21

We need a fast, high-

accuracy method to 

connect hits into tracks 

to determine the types 

and energies of 

particles coming out of 

every event
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Current techniques will* not work on next-gen colliders

*probably
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Standard doom-and-gloom plot 

In other words…
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Time, Energy, Number of Collisions

Predicted

capacity

Traditional

methods

(scale quadratically)

2024 – 2026

14 TeV

6 Billion events/second
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Collider physics has 4 steps

1. Observe hits on layers

2. Join hits into track

3. Convert track into particle 

information

4. (Dis)prove supersymmetry

23
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We want to build tracks

1. Observe hits on layers

2. Join hits into track

3. Convert track into particle information

4. (Dis)prove supersymmetry

24

This is our focus
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Previous ML Approaches

• Tracks as images (CNN)

• Tracks as sequences

of points (LSTM)

25
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Graphs are a natural way to represent tracks

•We have a collection of hits

•Want to “Connect the Dots”

• A natural way is to represent the problem is as a 

graph

26
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Graphs are a natural way to represent tracks

Some toy

data…

x direction

y 
d

ir
ec

ti
o

n



BERKELEY LAB 
Office of
Science

28
28

Graphs are a natural way to represent tracks

Join the

hits in some

clever/dumb

way…
x direction

y 
d

ir
ec

ti
o

n
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Graphs are a natural way to represent tracks

The tracks

should be

in here

x direction

y 
d

ir
ec

ti
o

n
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A 

COLLECTION 

OF NODES

NODE

What is a graph?
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AND EDGES

EDGE

What is a graph?
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NODES + 

EDGES = 

DOUBLETS

DOUBLET

What is a graph?
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NODES  

CAN HAVE 

FEATURES

NODE FEATURE

e.g. “West Oakland”

What is a graph?
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EDGES   

CAN HAVE 

FEATURES

EDGE FEATURE

e.g. “Under Maintenance 

– Single Track” 

What is a graph?
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THE WHOLE 

GRAPH  

CAN HAVE 

FEATURES

GRAPH FEATURE

e.g. “Sunday Timetable” 

What is a graph?
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The tracking problem can be considered edge classification

Join the nodes

in some 

dumb/clever

way…
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The tracking problem can be considered edge classification

Classify edges

with score 

between [0,1]

score > cut: true

score < cut: fake
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The tracking problem can be considered edge classification

Ultimate goal 

is to connect

doublets into 

tracks
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Realistic tracking is complicated

Ultimate goal 

is to connect

doublets into 

tracks
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Realistic tracking is complicated

Dataset

• “TrackML Kaggle 
Competition” dataset

• Generated by simulation
• 8000 collisions to train on
• Each collision has up to 

100,000 hits of around 
10,000 particles
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Enter the Graph Neural Network

1. Takes graph features (node-level, edge-level and graph-level)

2. Performs transformations on those features

3. Runs through a neural net

4. Returns graph predictions (node-level, edge-level or graph-

level)

Is a generalisation of Convolutional Neural Net (aka deep 

learning)

41
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Convolutional neural nets in 13 seconds

• Simply connecting every piece of information in a big equation does not always 

produce good predictions

• “Convolving” (i.e. combining complex chunks of information into simpler chunks that 

can be trained upon) can reveal “high-level features”

42

DNN 

with 

CNNs



BERKELEY LAB 
Office of
Science

43

A GNN generalises a CNN

• Convolutions with matrices really just connect 
neighbours in 2-D space

• A GNN connects neighbours in N-D

•Not necessarily flat – the geometry is determined 
by edge and node features, and edges between 
nodes

43
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Passing information around the graph gives it learning power

• Can make a node 

“aware” of its neighbours 

by concatenating the 

neighbouring hidden 

features

• Iterating this 

neighbourhood learning 

passes information around 

the graph
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Passing information around the graph gives it learning power

Message passing

+ 

Attention mechanism

= 

Excellent prediction

performance
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AI/ML usage in ExaTrkX @ Berkeley – The Lay of the Land

• Doublet classification (Steve & Xiangyang): MPNN, AGNN

• Triplet classification (Daniel): Concatenated AGNN

• Doublet classification for building (Nick): Embedded space + Doublet MLP

• End-to-End Track Classification (Nick): Embedded Clustering + GNN

• Doublet classification (Xiangyang): Layer-pair MLPs

• Distributed training (Steve) 

• Architecture exploration & Node regression (Daniel): Other GNN convolutions and 

aggregations, track parameter regression

46
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AI/ML usage in ExaTrkX @ Berkeley – The Lay of the Land

• Doublet classification (Steve & Xiangyang): MPNN, AGNN

• Triplet classification (Daniel): Concatenated AGNN

47

Will cover in next few slides
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AI/ML usage in ExaTrkX @ Berkeley – The Lay of the Land

• Doublet classification for building (Nick): Embedded space + Doublet MLP

• End-to-End Track Classification (Nick): Embedded Clustering + GNN

48

3D space Latent space MLP in ball



BERKELEY LAB 
Office of
Science

49

AI/ML usage in ExaTrkX @ Berkeley – The Lay of the Land

• Doublet classification (Xiangyang): Layer-pair MLPs

49

MLP 1

MLP 2

MLP 3

MLP 4
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AI/ML usage in ExaTrkX @ Berkeley – The Lay of the Land

• Distributed training (Steve) 

• Architecture exploration & Node regression (Daniel): Other GNN convolutions and 

aggregations, track parameter regression

50

Self-explanatory?
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• Message Passing

• Attention Message Passing

• Attention Message Passing 

with Recursion

GNN Edge prediction architecture
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Edge prediction architecture

• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

52

x n iterations

(hyperparameter)

𝑥
𝑦
𝑧 0
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• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

53

𝑥
𝑦
𝑧 0

ℎ1
…
ℎ𝑛 0

x n iterations

Edge prediction architecture
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• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

54

x n iterations
ℎ1
…
ℎ𝑛 0

ℎ1
…
ℎ𝑛 1

ℎ1
…
ℎ𝑛 0,1

Edge prediction architecture
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• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

55

x n iterations

0.6

ℎ1
…
ℎ𝑛 0,1

Edge prediction architecture
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• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

56

x n iterations

0.6 0.4 0.1

0.4 0.9 0.1 0.8 0.8

Edge prediction architecture
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• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

57

x n iterations

0.6 0.4

0.4 0.1 0.8

ℎ1 ℎ2

ℎ3 ℎ4 ℎ5

Edge prediction architecture
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• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

58

x n iterations

+

ℎ1 ℎ2

ℎ3
ℎ5

ℎ4

ℎ1
…
ℎ𝑛 0

0.6 0.4

0.4 0.1 0.8

Edge prediction architecture
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• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

59

x n iterations
ℎ1
…
ℎ𝑛 0

ℎ1
…
ℎ𝑛 1

ℎ1
…
ℎ𝑛 0,1

0.6

Edge prediction architecture
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• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

60

x n iterations

0.9 0.2 0.1

0.2 0.9 0.3 0.9 0.2

ℎ1
…
ℎ𝑛 0,1

x n iterations

(hyperparameter)

Edge prediction architecture
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Edge prediction performance

• Tuning hyperparameters (e.g. n iterations)

• Mention sandbox with W&B link

61
Daniel Murnane LBNL ATLAS Annual Meeting January 7th, 2020
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Edge prediction performance

• Tuning hyperparameters (e.g. n iterations)

• Mention sandbox with W&B link

62
Daniel Murnane LBNL ATLAS Annual Meeting January 7th, 2020
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Edge prediction performance

• Tuning hyperparameters (e.g. n iterations)

• Mention sandbox with W&B link

63
Daniel Murnane LBNL ATLAS Annual Meeting January 7th, 2020
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Edge prediction performance

• Tuning hyperparameters (e.g. n iterations)

• Mention sandbox with W&B link

64
Daniel Murnane LBNL ATLAS Annual Meeting January 7th, 2020
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Edge prediction performance

• Tuning hyperparameters (e.g. n iterations)

• Mention sandbox with W&B link

65
Daniel Murnane LBNL ATLAS Annual Meeting January 7th, 2020
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Edge prediction performance

• Tuning hyperparameters (e.g. n iterations)

• Mention sandbox with W&B link

66
Daniel Murnane LBNL ATLAS Annual Meeting January 7th, 2020
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Edge prediction performance

• Tuning hyperparameters (e.g. n iterations)

• Mention sandbox with W&B link

67
Daniel Murnane LBNL ATLAS Annual Meeting January 7th, 2020
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Edge prediction performance

• Tuning hyperparameters (e.g. n iterations)

• Mention sandbox with W&B link

68
Daniel Murnane LBNL ATLAS Annual Meeting January 7th, 2020
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Edge prediction performance

• Tuning hyperparameters (e.g. n iterations)

• Mention sandbox with W&B link

69
Daniel Murnane LBNL ATLAS Annual Meeting January 7th, 2020

Choose 

threshold

for true

edges

e.g. 0.5
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Now we have classified doublets 

70

Each edge has 

a score 

between [0,1]

How do we

make tracks…
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Now we have classified doublets 

71

Each edge has 

a score 

between [0,1]

How do we

make tracks…
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Why not simply join together our doublet predictions?

72
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Pretty easy

decision
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Doublet choice can be ambiguous

73

0.99

x1
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x3x4

0.87 0.84
D

is
ta

nc
e
 f

ro
m

 

d
e
te

ct
o
r 

ce
nt

re
 

Not so easy…

so teach the network

how to combine
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But a GNN doesn’t know about “triplets”

74

?

x1

x2

x3x4
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A GNN only knows

about nodes 

and edge
?
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Moving to a “doublet graph” gives us back GNN power

75

0.99

x1

x2

x3x4

0.87 0.84

Now…

nodes represent doublets,

edges represent triplets

x2x2
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Moving to a “doublet graph” gives us back GNN power

76

0.99

x1
x2

x3x4

0.87 0.84

Now…

nodes represent doublets,

edges represent triplets

x2x2( ) ( )

( )
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The triplet classifier runs with all the benefits of the doublet classifier

• Aim is to beat all traditional methods of finding true 
triplets

• Can then either continue to 4, 5, …-plets in order to 
create and end-to-end GNN track builder…

• …or hand off the triplets as seeds to the traditional 
techniques, knowing we can be confident in their 
accuracy

77
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Triplet GNN performs 
very well

Gold: Unambiguously correct triplet or 

quadruplet

Other colours: False positive/negative

Key:

Silver: Ambiguously correct triplet or quadruplet 

(i.e. edge shared by correct triplet and 

false positive triplet)

Bronze dashed: Correct triplet, but missed 

quadruplet (i.e. edge shared by correct 

triplet and false negative triplet)

Red: Completely false positive triplet

Blue dashed: Completely false negative triplet
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Triplet GNN performs 
very well

Gold: Unambiguously correct triplet or 

quadruplet

Other colours: False positive/negative

Key:

Silver: Ambiguously correct triplet or quadruplet 

(i.e. edge shared by correct triplet and 

false positive triplet)

Bronze dashed: Correct triplet, but missed 

quadruplet (i.e. edge shared by correct 

triplet and false negative triplet)

Red: Completely false positive triplet

Blue dashed: Completely false negative triplet
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Black: Triplet classifier correctly 

labelled, doublet classifier 

mislabelled

Red: Doublet classifier correctly 

labelled, triplet classifier 

mislabelled

In this graph, triplet classifier

Fixes 389 edges

Worsens 10 edges

Triplet GNN improves 
doublet GNN results
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Score threshold gives a smarter triplet classifier

• Excellent performance:

• 99.09% efficiency  

But…

• Problem: combinatorically increasing graph size                                     

e.g. For TrackML data:

• 𝑂(1,000) tracks, 

• 𝑂(6,000) hits, 

• 𝑂(28,000) doublets, 

• 𝑂(100,000) triplets

81

Efficiency = 

# triplets classified 
as true

Total # of true 
tripletsF 

Y
 I
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Score threshold gives a smarter triplet classifier

• Excellent performance:

• 99.09% efficiency  

• Solution: Cut doublet input before triplet construction

• Doublet threshold of 0.04 retains 98% efficiency

• Reduces doublets 𝑂(28,000)→ 𝑂 6,000

• We thus have a sustainable process to N-plet GNN

82

Efficiency = 

# triplets classified 
as true

Total # of true 
tripletsF 

Y
 I
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Howdy from the Exa.TrkX Collaboration!

83

• Mission

Optimization, performance and validation studies of ML 
approaches to the Exascale tracking problem, to enable 
production-level tracking on next-generation detector systems.

• People

• Caltech: Joosep Pata, Maria Spiropulu, Jean-Roch Vlimant, 
Alexander Zlokapa

• Cincinnati: Adam Aurisano, Jeremy Hewes 

• FNAL: Giuseppe Cerati, Lindsey Gray, Thomas Klijnsma, 
Jim Kowalkowski, Gabriel Perdue, Panagiotis Spentzouris

• LBNL: Paolo Calafiura (PI), Nicholas Choma, Steve Farrell, 
Xiangyang Ju, Daniel Murnane, Prabhat 

• ORNL: Aristeidis Tsaris

• SLAC: Kasuhiro Terao, Tracy Usher
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Next Steps

• Full pipeline of Embedded Graph Building → Doublet Classifier → Triplet Classifier

• Leverage multi-GPU/multi-node distributed training and inference

• Transfer as much data pre/post-processing to GPUs/multi-process as possible (e.g. RAPIDS, 

CuPy, Numba)

• Optimise model hyperparameters (e.g. Ray Tune, Weights & Biases)

• Explore other model architectures (e.g. ?)

• Investigate adding more features to classifiers (e.g. embedded space co-ordinates, detector 

pixel information)

84
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BACKUP

85
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Discovering new physics is getting harder and harder

0.1
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Collider Energy Cost

Cost (min)

Cost (max)

Power (Cost (min))

Adapted from 
[V Shiltsev, 2014,
JINST 9 T07002]

• New physics needs high energy

• Discovery cost is increasing with energy 
scale    (LHC = $4.46 Billion)
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Discovering new physics is getting harder and harder
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• New physics needs high energy

• Discovery cost is increasing with energy 
scale    (LHC = $4.46 Billion)

• Maybe there’s hope: Less than linear 
increase! 
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Discovering new physics is getting harder and harder
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Adapted from 
[V Shiltsev, 2014,
JINST 9 T07002]

• New physics needs high energy

• Discovery cost is increasing with energy 
scale    (LHC = $4.46 Billion)

• Maybe there’s hope: Less than linear 
increase! 

• Nothing is that easy…

• With LHC run 3 (2021-25), more energy, 
more problems
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But smashing things is not really the aim

• Dream is to produce a lone {Higgs boson, tau lepton, vector boson, …} to study its 

properties

• These are heavy (e.g. Higgs = 133 x Proton), so we need to introduce high energy to 

produce them

Ingredient 1:

Proton Relativity: It doesn’t know 

its velocity/kinetic energy

E

= ?
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But smashing things is not really the aim

• Dream is to produce a lone {Higgs boson, tau lepton, vector boson, …} to study its 

properties

• These are heavy (e.g. Higgs = 133 x Proton), so we need to introduce high energy to 

produce them

Ingredient 1:                               Need to introduce….                                   Ingredient 2:

Proton
Available

energy

= 2 E

E
Proton

E
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Aside: quick 
notation

• Recall ≡ Efficiency

• Precision ≡ Purity

91
Daniel Murnane LBNL ATLAS Annual Meeting January 7th, 2020
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Graph construction

• Start with hits from the TrackML Challenge

• Detector geometry

• We select hits from barrel

• Other heuristical cuts: no doubles, implicit 

pT cut (from TrackML)

92
Daniel Murnane LBNL ATLAS Annual Meeting January 7th, 2020
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Architecture: 

1. Input network, 

2. (Edge network, Node 

network) x 3, 

3. Edge network out

Triplet train set: 1,920

Doublet train set: 1,920

Triplet Classifier
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Triplet Classifier

Threshold 0.5 0.8

Accuracy 0.9993 0.9998

Purity 0.9870 0.9935

Efficiency 0.9978 0.9945

Threshold 0.5 0.8

Accuracy 0.9737 0.9804

Purity 0.8941 0.9449

Efficiency 0.9906 0.9615

( with 𝑝𝑇 > 0.5 𝐺𝑒𝑉 )

Compare with doublet classifier:
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Threshold 0.5 0.8

Accuracy 0.9994 0.9995

Purity 0.9742 0.9890

Efficiency 0.9857 0.9768

Threshold 0.5 0.8

Accuracy 0.9848 0.9891

Purity 0.8668 0.9465

Efficiency 0.9478 0.9090

( with no 𝑝𝑇 cut )

Compare with doublet classifier:

Triplet Classifier
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We can supercharge a particular GNN

1. Optimising hyperparameters with Weights & Biases  [wandb.ai]
(Hyperparameters are usually chosen by-hand to control the learning process)

2. Threshold on doublet scores: 

Order of magnitude improvement in triplet classifier
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We could supercharge all GNNs

• We don’t know which GNN works best

• Every day sees more techniques being constructed – flash list

• Implementing by hand is time-consuming

• Would like a GNN-generator

• Call it ArchetrkX

• Represents an ML architecture (i.e. the collection of neural nets, convolutions, transformations, etc.) 
itself as a graph – a computation graph

• This graph can be randomly generated, run as a GNN on the data, and tested for accuracy

• We can optimise the best GNN architecture by applying a GNN to this computation graph

• Meta-GNN optimisation, all run in ArchetrkX
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ArchetrkX performance

• Simple image showing the GNN architecture generation

• Preliminary results of a generated architecture

• Parallel co-ordinates example of results
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