Machine Learning for Particle Tracking

ExaTrkX @ Berkeley Lab

1

Paolo Calafiura (PI), Nicholas Choma, Steve Farrell, Xiangyang Ju, Daniel Murnane (*ExaTrkX*) Zachary Marshall (*ATLAS*)

Office of

WHY COLLIDERS? New physics lives at higher energies

Discovering new physics is getting harder and harder

- 1. How do we discover new physics?
- 2. The "tracking problem" of particle physics
- 3. Tracking is hard, and getting harder
- 4. Graphs are a natural representation of tracks
- 5. GNNs and other ML approaches to tracking
- 6. The road to fully learned tracks

The usual story: Smashing atoms into millions of pieces is useful

Office of Science

New physics needs collisions...

- Higgs boson (LHC),
- Quarks (SLAC, Fermilab), and
- Neutrino mass (Super-Kamiokande)
- Supersymmetry,
- Composite Higgs,
- Dark matter,
- Leptoquarks,
- W/Z prime, and
- Axions

BERKELEY LAB

Discovered with collisions

Could be discovered with collisions

... but collisions are messy

- High energy collisions bring huge numbers of particles (unfortunately)
- Want to see the particles coming out of the collisions, which we can get from the curves ("tracks") moving through a magnetic field

... but collisions are messy

- High energy collisions bring huge ۲ numbers of particles (unfortunately)
- Want to see the particles coming out of the collisions, which we can get from the curves ("tracks") moving through a magnetic field
- Why not just watch the particles curving directly?
- Every observation/measurement affects particle track
- We need to observe the tracks as little as possible

Imagine solving a jigsaw puzzle

with your eyes closed)

And every time...

you peak...

the puzzle

becomes...

more...

and more...

...complicated

- New physics requires high energy and high precision
- This implies carefully tracking millions of particles per event through the (asfew-as-possible) layers of a detector
- Each collision comprises of dozens of events
- Each second produces tens of millions of collisions

Office of

- New physics requires high energy and high precision
- This implies carefully tracking millions of particles per event through the (asfew-as-possible) layers of a detector
- Each collision comprises of dozens of events
- Each second produces tens of millions of collisions

Office of

19

- New physics requires high energy and high precision
- This implies carefully tracking millions of particles per event through the (asfew-as-possible) layers of a detector
- Each collision comprises of dozens of events
- Each second produces tens of millions of collisions

Office of

A particle interacting with a layer is a "hit"

BERKELEY LAB

- New physics requires high energy and high precision
- This implies carefully tracking millions of particles per event through the (asfew-as-possible) layers of a detector
- Each collision comprises of dozens of events
- Each second produces tens of millions of collisions

20

We need a fast, highaccuracy method to connect hits into tracks to determine the types and energies of particles coming out of every event

Current techniques will* not work on next-gen colliders

Standard doom-and-gloom plot

Time, Energy, Number of Collisions

BERKELEY LAB

U.S. DEPARTMENT OF Office of Science

Collider physics has 4 steps

- 1. Observe hits on layers
- 2. Join hits into track
- 3. Convert track into particle information
- 4. (Dis)prove supersymmetry

We want to build tracks

1. Observe hits on layers

2. Join hits into track

This is our focus

- 3. Convert track into particle information
- 4. (Dis)prove supersymmetry

Previous ML Approaches

BERKELEY LAB

rrrr

- We have a collection of hits
- Want to "Connect the Dots"
- A natural way is to represent the problem is as a graph

Some toy data...

Office of

NODES CAN HAVE FEATURES

NODE FEATURE e.g. "West Oakland"

BERKELEY LAB

rrrrr

EDGES CAN HAVE FEATURES

EDGE FEATURE e.g. "Under Maintenance – Single Track"

BERKELEY LAB

rrrrr

THE WHOLE GRAPH **CAN HAVE FEATURES**

GRAPH FEATURE e.g. "Sunday Timetable"

The tracking problem can be considered edge classification

Join the nodes in some dumb/clever way...

BERKELEY LAB

The tracking problem can be considered edge classification

Classify edges with score between [0,1]

score > cut: true
score < cut: fake</pre>

BERKELEY LAB

Office of

Science

The tracking problem can be considered edge classification

Ultimate goal is to connect doublets into tracks

Realistic tracking is complicated

Ultimate goal is to connect doublets into tracks

Realistic tracking is complicated

Dataset

- "TrackML Kaggle Competition" dataset
- Generated by simulation
- 8000 collisions to train on
- Each collision has up to 100,000 hits of around 10,000 particles

- 1. Takes graph features (node-level, edge-level and graph-level)
- 2. Performs transformations on those features
- 3. Runs through a neural net
- 4. Returns graph predictions (node-level, edge-level or graphlevel)
- Is a generalisation of Convolutional Neural Net (aka deep learning)

Convolutional neural nets in 13 seconds

- Simply connecting every piece of information in a big equation does not always produce good predictions
- "Convolving" (i.e. combining complex chunks of information into simpler chunks that can be trained upon) can reveal "high-level features"

A GNN generalises a CNN

- Convolutions with matrices really just connect neighbours in 2-D space
- A GNN connects neighbours in N-D
- Not necessarily flat the geometry is determined by edge and node features, and edges between nodes

Passing information around the graph gives it learning power

- Can make a node "aware" of its neighbours by concatenating the neighbouring hidden features
- Iterating this neighbourhood learning passes information around the graph

Passing information around the graph gives it learning power

Message passing + Attention mechanism =

Excellent prediction performance

- **Doublet classification** (Steve & Xiangyang): MPNN, AGNN
- **Triplet classification** (Daniel): Concatenated AGNN
- **Doublet classification for building** (Nick): Embedded space + Doublet MLP
- End-to-End Track Classification (Nick): Embedded Clustering + GNN
- **Doublet classification** (Xiangyang): Layer-pair MLPs
- Distributed training (Steve)
- Architecture exploration & Node regression (Daniel): Other GNN convolutions and aggregations, track parameter regression

- **Doublet classification** (Steve & Xiangyang): MPNN, AGNN
- Triplet classification (Daniel): Concatenated AGNN
 Doublet classific Will cover(Nin) next fewstslidesoublet MLP
- End-to-End Track Classification (Nick): Embedded Clustering + GNN
- **Doublet classification** (Xiangyang): Layer-pair MLPs
- **Distributed training** (Steve)
- Architecture exploration & Node regression (Daniel): Other GNN convolutions and aggregations

- **Doublet classification** (Steve & Xiangyang): MPNN, AGNN
- Triplet classification (Daniel): Concatenated AGNN
- **Doublet classification for building** (Nick): Embedded space + Doublet MLP
- End-to-End Track Classification (Nick): Embedded Clustering + GNN
- 3D space (Xiang) Latent space MLP in ball

- **Doublet classification** (Steve & Xiangyang): MPNN, AGNN
- Triplet classification (Daniel): Concatenated AGNN
- **Doublet classification for building** (Nick): Embedded space + Doublet MLP
- End-to-End Track Classification (Nick): Embedded Clustering + GNN
 Doublet classification (XSelf-explanatory?
- Distributed training (Steve)
- Architecture exploration & Node regression (Daniel): Other GNN convolutions and aggregations, track parameter regression

Attention Message Passing

BERKELEY LAB

.....

 Attention Message Passing with Recursion

- Input node features
- Hidden node features
- Hidden edge features
- Edge score
- Attention aggregation
- New hidden node features
- New hidden edge features
- New edge score

- Input node features
- Hidden node features
- Hidden edge features
- Edge score
- Attention aggregation
- New hidden node features
- New hidden edge features
- New edge score

BERKELEY LAB

x n iterations

- Input node features
- Hidden node features
- Hidden edge features
- Edge score
- Attention aggregation
- New hidden node features
- New hidden edge features
- New edge score

- Input node features
- Hidden node features
- Hidden edge features
- Edge score
- Attention aggregation
- New hidden node features
- New hidden edge features
- New edge score

- Input node features
- Hidden node features
- Hidden edge features
- Edge score
- Attention aggregation
- New hidden node features
- New hidden edge features
- New edge score

BERKELEY LAB

x n iterations

- Input node features
- Hidden node features
- Hidden edge features
- Edge score
- Attention aggregation
- New hidden node features
- New hidden edge features
- New edge score

BERKELEY LAB

 \vec{h}_1 \vec{h}_2 0.4 0.6 0.1 0.8 0.4 \vec{h}_3 $ec{h}_4$ \vec{h}_{5}

x n iterations

- Input node features
- Hidden node features
- Hidden edge features
- Edge score
- Attention aggregation
- New hidden node features
- New hidden edge features
- New edge score

- Input node features
- Hidden node features
- Hidden edge features
- Edge score
- Attention aggregation
- New hidden node features
- New hidden edge features
- New edge score

- Input node features
- Hidden node features
- Hidden edge features
- Edge score
- Attention aggregation
- New hidden node features
- New hidden edge features
- New edge score

Now we have classified doublets

Each edge has a score between [0,1]

How do we make tracks...

BERKELEY LAB

Office of

Science

Now we have classified doublets

Each edge has a score between [0,1]

How do we make tracks...

Why not simply join together our doublet predictions?

Doublet choice can be ambiguous

Office of

Science

I.S. DEPARTMENT OF

But a GNN doesn't know about "triplets"

Moving to a "doublet graph" gives us back GNN power

Moving to a "doublet graph" gives us back GNN power

 $\begin{pmatrix} x_2 \\ x_4 \\ 0.87 \end{pmatrix}$ $\begin{pmatrix} \hat{\mathbf{x}}_{3} \\ \mathbf{x}_{3} \\ \mathbf{0}_{.84} \end{pmatrix}$ nodes represent doublets, edges represent triplets

Now...

The triplet classifier runs with all the benefits of the doublet classifier

- Aim is to beat all traditional methods of finding true triplets
- Can then either continue to 4, 5, ...-plets in order to create and end-to-end GNN track builder...
- ...or hand off the triplets as seeds to the traditional techniques, knowing we can be confident in their accuracy

Triplet GNN performs very well

Gold: Unambiguously correct triplet or quadruplet

Other colours: False positive/negative

Key:

- Silver: Ambiguously correct triplet or quadruplet (i.e. edge shared by correct triplet and false positive triplet)
- Bronze dashed: Correct triplet, but missed quadruplet (i.e. edge shared by correct triplet and false negative triplet)
- Red: Completely false positive triplet

BERKELEY LAB

Blue dashed: Completely false negative triplet

Triplet GNN performs very well

Gold: Unambiguously correct triplet or quadruplet

Other colours: False positive/negative

Key:

Silver: Ambiguously correct triplet or quadruplet (i.e. edge shared by correct triplet and false positive triplet)

Bronze dashed: Correct triplet, but missed quadruplet (i.e. edge shared by correct triplet and false negative triplet)

Red: Completely false positive triplet

BERKELEY LAB

Blue dashed: Completely false negative triplet

Triplet GNN improves doublet GNN results

Black: Triplet classifier correctly labelled, doublet classifier mislabelled

Red: Doublet classifier correctly labelled, triplet classifier mislabelled

In this graph, triplet classifier Fixes 389 edges Worsens 10 edges

BERKELEY LAB

rrrr

Score threshold gives a smarter triplet classifier

- Excellent performance:
 - 99.09% efficiency

But...

- **Problem:** combinatorically increasing graph size e.g. For TrackML data:
 - 0(1,000) tracks,
 - 0(6,000) hits,
 - 0(28,000) doublets,
 - *O*(100,000) triplets

LAB

Score threshold gives a smarter triplet classifier

- Excellent performance:
 - 99.09% efficiency

—	Efficiency =	<pre># triplets classified as true</pre>
Ľ		Total # of true triplets

- Solution: Cut doublet input before triplet construction
 - Doublet threshold of 0.04 retains 98% efficiency
 - Reduces doublets $O(28,000) \rightarrow O(6,000)$
 - We thus have a sustainable process to N-plet GNN

Howdy from the Exa.TrkX Collaboration!

• Mission

Optimization, performance and validation studies of ML approaches to the Exascale tracking problem, to enable production-level tracking on next-generation detector systems.

• People

- Caltech: Joosep Pata, Maria Spiropulu, Jean-Roch Vlimant, Alexander Zlokapa
- Cincinnati: Adam Aurisano, Jeremy Hewes
- FNAL: Giuseppe Cerati, Lindsey Gray, Thomas Klijnsma, Jim Kowalkowski, Gabriel Perdue, Panagiotis Spentzouris
- LBNL: Paolo Calafiura (PI), Nicholas Choma, Steve Farrell, Xiangyang Ju, Daniel Murnane, Prabhat
- ORNL: Aristeidis Tsaris
- SLAC: Kasuhiro Terao, Tracy Usher

Next Steps

- Full pipeline of Embedded Graph Building ightarrow Doublet Classifier ightarrow Triplet Classifier
- Leverage multi-GPU/multi-node distributed training and inference
- Transfer as much data pre/post-processing to GPUs/multi-process as possible (e.g. RAPIDS, CuPy, Numba)
- Optimise model hyperparameters (e.g. Ray Tune, Weights & Biases)
- Explore other model architectures (e.g. ?)
- Investigate adding more features to classifiers (e.g. embedded space co-ordinates, detector pixel information)

Discovering new physics is getting harder and harder

• New physics needs high energy

BERKELEY LAB

• Discovery cost is increasing with energy scale (LHC = \$4.46 Billion)

Discovering new physics is getting harder and harder

- New physics needs high energy
- Discovery cost is increasing with energy scale (LHC = \$4.46 Billion)
- Maybe there's hope: *Less than linear* increase!

Discovering new physics is getting harder and harder

- New physics needs high energy
- Discovery cost is increasing with energy scale (LHC = \$4.46 Billion)
- Maybe there's hope: *Less than linear* increase!
- Nothing is that easy...

LAB

• With LHC run 3 (2021-25), more energy, more problems

But smashing things is not really the aim

- Dream is to produce a lone {Higgs boson, tau lepton, vector boson, ...} to study its properties
- These are heavy (e.g. Higgs = 133 x Proton), so we need to introduce high energy to produce them

Ingredient 1:

Relativity: It doesn't know its velocity/kinetic energy

But smashing things is not really the aim

- Dream is to produce a lone {Higgs boson, tau lepton, vector boson, ...} to study its properties
- These are heavy (e.g. Higgs = 133 x Proton), so we need to introduce high energy to produce them

Ingredient 1:

Need to introduce....

Aside: quick notation

January 7th, 2020

- Recall \equiv Efficiency
- Precision \equiv Purity

LBNL ATLAS Annual Meeting

U.S. DEPARTMENT OF ENERGY Office of Science

Graph construction

- Start with hits from the TrackML Challenge
- Detector geometry
- We select hits from barrel
- Other heuristical cuts: no doubles, implicit pT cut (from TrackML)

U.S. DEPARTMENT OF

C

Office of

Science

LBNL ATLAS Annual Meeting

<u>Janua</u>ry 7th, 2020 🚺

Triplet Classifier

BERKELEY LAB

rrrr

Architecture:

- 1. Input network,
- 2. (Edge network, Node network) x 3,
- 3. Edge network out

Triplet train set: 1,920 Doublet train set: 1,920

Triplet Classifier

(with $p_T > 0.5 \ GeV$)

Threshold	0.5	0.8
Accuracy	0.9993	0.9998
Purity	0.9870	0.9935
Efficiency	0.9978	0.9945

Compare with doublet classifier:

BERKELEY LAB

rrrrr

Threshold	0.5	0.8
Accuracy	0.9737	0.9804
Purity	0.8941	0.9449
Efficiency	0.9906	0.9615

Office of Science

Triplet Classifier

(with no p_T cut)

Threshold	0.5	0.8
Accuracy	0.9994	0.9995
Purity	0.9742	0.9890
Efficiency	0.9857	0.9768

Compare with doublet classifier:

BERKELEY LAB

rrrrr

Threshold	0.5	0.8
Accuracy	0.9848	0.9891
Purity	0.8668	0.9465
Efficiency	0.9478	0.9090

Office of

Science

We can supercharge a particular GNN

Optimising hyperparameters with Weights & Biases [wandb.ai]
(Hyperparameters are usually chosen by-hand to control the learning process)

2. Threshold on doublet scores:

BERKELEY LAB

Order of magnitude improvement in triplet classifier

We could supercharge all GNNs

- We don't know which GNN works best
- Every day sees more techniques being constructed flash list
- Implementing by hand is time-consuming
- Would like a GNN-generator

LAB

- Call it ArchetrkX
- Represents an ML architecture (i.e. the collection of neural nets, convolutions, transformations, etc.) itself as a graph a computation graph
- This graph can be randomly generated, run as a GNN on the data, and tested for accuracy
- We can optimise the best GNN architecture by applying a GNN to this computation graph
- Meta-GNN optimisation, all run in ArchetrkX

ArchetrkX performance

- Simple image showing the GNN architecture generation
- Preliminary results of a generated architecture
- Parallel co-ordinates example of results

2020 CS Postdoc Symposium

